
ONLINE MECHANISM DESIGN

YIANNIS GIANNAKOPOULOS
scholar of

PROPONDIS FOUNDATION

Supervised by
PROF. ELIAS KOUTSOUPIAS

M.Sc. Thesis
submitted to the

Graduate Program in Logic, Algorithms and Computation

ATHENS, SEPTEMBER 2008

Acknowledgements

It was through my supervisor’s, Professor Elias Koutsoupias’s lectures that I fell in love
with Theoretical Computer Science and, for that reason, I will always be indebted to him.
Being around him and studying under his supervision has been a privilege. I would also
like to thank the other two members of my Advisory Committee, namely Professor Costas
Dimitracopoulos and Assoc. Professor Evagelos Raptis, for being always there whenever
their students want them and for their sincere efforts to make the University of Athens a
better place to live and study. I also feel the need to thank all the people at “Propondis”
Foundation and especially director Ioannis Baveas for honoring me with one of their very
competitive scholarships, as well as for their constant, invaluable moral support.

Throughout the years, and particularly during the writing of this thesis, some very spe-
cial friends have been patient enough to try decipher and cope with my “algorithmic” way
of life. I am very fortunate to have Kostas Tsirkas, Alexandra Schürmann and, of course,
my “fantastic” sister Angeliki around me. Finally, I would like to thank Penny Tzevelekou
for being the wonderful person she is and for constituting the dominant strategy equilib-
rium of my life.

This work is dedicated to my grandparents Varvara and Yiannis K. Giannakopoulos.

YG

i

ii

Contents

A Preliminaries 1

1 Game Theory 3
1.1 Introduction - Examples . 3

1.2 Basic Solution Concepts . 9

1.3 Mixed Strategies and Nash Equilibria . 13

1.4 Characterizing Nash Equilibria . 15

1.5 Notes . 18

2 Mechanism Design 21
2.1 Social Choices and Mechanisms . 22

2.2 Direct Revelation Mechanisms and Truthfulness 28

2.3 VCG Mechanisms . 33

2.4 Notes . 39

3 Competitive Analysis 41
3.1 Online Optimization Problems . 41

3.2 Competitive Analysis . 42

3.3 Notes . 45

B Online Mechanism Design 47

4 Online Mechanism Design 49
4.1 Direct-Revelation Mechanisms . 52

4.2 Limited Misreports . 54

4.3 Truthfulness . 55

5 Single-Valued Online Domains 59
5.1 Basic Definitions . 60

iii

CONTENTS

5.2 Monotonicity . 61
5.3 Truthfulness . 65

C Specific Online Auctions 71

6 Expiring Items Auctions 73
6.1 The Greedy Auction . 75
6.2 Upper Bound . 76
6.3 Lower Bound . 77
6.4 An Impossibility Result . 79
6.5 Extensions – Open Problems . 83

7 Adaptive, Limited-Supply Auctions 85
7.1 The Classical Secretary Problem . 87
7.2 Adaptive Threshold Auctions . 91
7.3 Upper Bounds . 94
7.4 Extensions – Open Problems . 99

Bibliography 101

Index 105

iv

Part A

Preliminaries

1

Chapter 1

Game Theory

1.1 Introduction - Some well known Games

In this section we will try to introduce some of the fundamental notions of Game Theory
through “natural” examples, building a strong intuition before presenting formal defini-
tions later on at section 1.2 and section 1.3. Our analysis at this section is informal and
generally our tone is light and narrative, in contrast to the other parts of this project where
the attitude is rigorous and quite formal. After all, Game Theory has its foundations built
upon social sciences and that is why in this introduction we intentionally act so as to stim-
ulate that kind of motivation and interest from the reader’s side.

1.1.1 Prisoner’s dilemma

Consider the following scenario: The police has arrested two main suspects for a crime,
namely Prisoner 1 and Prisoner 2. However, the evidence are insufficient and only a con-
fession could prove full charges. If both prisoners remain silent (i.e. do not confess) then
both will serve a small prison term of 2 years, just for minor charges. In case only one of
them confesses, he is used as a witness against the other. The one who confessed receives
a reduced 1 year sentence because of his “cooperation” and the one who remained silent
serves a full sentence of 10 years. Finally, if both confess, there are enough evidence to
incriminate them both, however their cooperation grants them a sentence reduction to 5
years. We must also point out that prisoners are interrogated in different rooms, thus no
cooperation between them is possible. However, every prisoner is completely informed
by the policemen of his possible choices, the other prisoner’s choices, as well as of the var-
ious results (imprisonment durations) of their choices. No prisoner is informed about the
other prisoner’s decision.

3

CHAPTER 1. GAME THEORY

Summarizing, there are two choices for every prisoner, namely confess or silent. We call
them strategies and say that each prisoner’s strategy set is {confess, silent}. Every prisoner’s
decision is independent of the other’s, so there are exactly four distinct possible outcomes
in our scenario, namely (confess, confess), (silent, confess), (confess, silent) and (silent, silent),
where the first component of these tuples is chosen by Prisoner 1 and the second by Pris-
oner 2. We call such a tuple a strategy profile, because it captures all prisoners’ selected
strategies.

With each strategy profile there is a numerical outcome associated, the sentence each
prisoner must serve. Because these numerical values carry a negative effect to the prisoners,
we can assign a negative sign to them and see the resulting values as the “gain”1 of the
prisoners who receive these sentences. In this context, every rational prisoner obviously
tries maximize his gain, i.e. minimize his imprisonment term. We call each prisoner’s gain
at a given outcome the prisoner’s utility (or payoff) on this strategy profile.

All the above can be represented in an elegant way by the following 2× 2 matrix at:

Prisoner 2

confess silent

Prisoner 1 confess −5, −5 −1, −10

silent −10, −1 −2, −2

Table 1.1: Prisoner’s Dilemma

Under this representation we can model our scenario as a “game”2: Prisoner 1 chooses
a row, Prisoner 2 a column and these choices are made simultaneously. At each row-column
combination (i.e. strategy profile) the utilities of the prisoners are given in the correspond-
ing cell. The first value is Prisoner’s 1 and the second is Prisoner’s 2 (this is by convention).
Prisoners 1 and 2 are the two players of the game.

1.1.2 What Game Theory is all about. Rationality and equilibria.

Although recognizing the rules, strategies and utilities of a game is very important, all this
mathematical modeling is not done only to describe game scenarios but for a much more
interesting (and powerful) purpose: to analyze, and even predict, the players’ behavior. This

1Although in no way can years in prison be seen as gain (no matter how many minus signs we put in
front of them...!), here we use the simplifying (though mathematically natural) interpretation: negative gain
= loss.

2We have not formally defined the term yet, however the reader is encouraged, at this point, to rely on
his/her intuition about everyday life “games”.

4

1.1. INTRODUCTION - EXAMPLES

idea is, of course, the backbone of Game Theory and is consequently going to underlie all
our results and analysis in this thesis.

In order to analyze such behaviors, it is inevitable to make some solid assumptions
about how players think and act. These assumptions must be fundamental (simple and
strong enough to capture the essence of behavior and to be applicable to the various cate-
gories of games) and natural (being compatible with our intuitions and expectations about
behavior in such strategic interactions). Luckily enough, for us there is only one such as-
sumption we are going to need: rationality. By saying that our players act rationally we
mean one and only one, very specific thing: players behave so as to maximize their (total)
utility.

Let us analyze the behavior of our players at the Prisoner’s Dilemma game. Look at
table 1.1 and remember that Prisoner 1 chooses lines and Prisoner 2 columns. Let’s think
for a moment what is Prisoner’s 1 best (i.e. utility maximizing) strategy. If he plays line 1
then (depending on what Prisoner 2 plays3) there are two possibilities: If Prisoner 2 plays
column 1 then Prisoner 1 will receive a utility of−5 (first component of cell (1,1)) and if he
plays column 2 then Prisoner 1 receives utility−1. But if Prisoner 1 chooses line 2 then his
utilities are worse, namely−10 and−2 respectively. This shows us that, whatever Prisoner
2 plays, Prisoner’s 1 best strategy is to select line 1, i.e. confess. In an analogous way, it is
easy to see that also Prisoner’s 2 best strategy is confession. So, based on our fundamental
assumption of rationality, it is evident that our game will result in both players selecting
to confess (strategy profile (confess, confess)).

We refer (informally) to such “stable” states, which we believe our games are going to
result to, as solutions4. In the Prisoner’s Dilemma game the situation was very clear and
the (confess, confess) solution is the obvious rational outcome. Not every game (in fact,
very few do) possesses such a strong solution (as we will see at our following examples of
subsection 1.1.3 and subsection 1.1.4) and is the job of Game Theory to come up with less
demanding, yet natural, solution concepts and apply them to predict various equilibria5,
i.e. strategy profiles which seem reasonable and stable enough to be the actual outcomes
of our games.

3Remember that the two players play simultaneously and independently.
4The term is used here rather intuitively and no strict connections are to be drawn with the formal,

specific use of the term in the classic paper of Nash [1951].
5sing. equilibrium

5

CHAPTER 1. GAME THEORY

1.1.3 Battle of sexes

Now consider the following situation: A boy and a girl try to decide how to spend their
evening. They want to go out together, however there is a disagreement about whether
to go to a football (a.k.a. soccer) game or to the movies.Although it is irrelevant to our
results, let us say that the football match is the Champion’s League final and the movie is
the new George Clooney film, just to make the competition a little more intriguing... The
description of the game is given by the following 2× 2 matrix:

Boy

film football

Girl film 10, 7 5, 5

football 1, 1 7, 10

Table 1.2: Battle of Sexes

Their first priority is to attend an event together, so the boy is ready (for a utility of 7,
instead of the optimum 10) to watch for 2 hours a man admittedly much more beautiful
than him charming his girlfriend, just to be with her during the movie. In the same way,
the girl is ready to tolerate the view of 22 men chasing a ball along a huge field for 2 hours.
In the contrary, even if one player manages to attend the event he/she prefers, this is going
to give him/her a utility of only 2 if the other one is not with him. Of course, the absolute
disaster would be for the players to be apart and also not attend their preferred events (a
situation highly unlikely to occur...).

To summarize, this game is all about the love for each other vs. our personal desires,
and the question is what a rational player would choose to do. In our analysis there is
no space for a philosophical6 approach: maximization of utility is our only goal! Unfor-
tunately, in this case there is no such a “strong” solution as in the Prisoner’s Dilemma
game (see table 1.1). This can be easily verified by a quick inspection of the game’s matrix
(table 1.2). That means, no player has a strategy which is optimal regardless of the other
player’s choices.

What about strategies that are optimal given a specific strategy of the other player? That
is, what is the best response7 of a player to the other players’ choices? Surely, this is

6However, the reader would definitely benefit from giving some thought to the above fundamental ques-
tion of human nature...

7Note here that “response” has no time significance. Our players act simultaneously and independently.
What we mean, is how a player should act, given all other players’ choices fixed (and known). It is sometimes
useful to think of these fixed strategies as our player’s predictions about how all the other players are going to
act.

6

1.1. INTRODUCTION - EXAMPLES

a relaxed notion of equilibrium, compared to that of the Prisoner’s Dilemma, however
it seems natural and stable enough: this “best response” schema captures the essence of
strategic behaviour. So, if we assume that the girl chooses to go to the film, then the boy’s
optimal response is to join her (for a utility of 7, compared to a utility of 5 if he goes to the
football game alone.). In an analogous way, it is easy to see that the boy’s best response to
the girl playing football is to play football. The situation is completely symmetric for the
best responses of the girl.

The above analysis leads us to the conclusion that whatever one player chooses, the
other will benefit from choosing the same strategy. So it is reasonable to propose either
profile (film,film) or (football, football) (i.e. cells (1,1), (2,2)) as a stable solution for our
game. Here stability has a pretty coherent interpretation: no player has the incentive
(i.e. utility improvement) to deviate (i.e. change his/her strategy) from the above strategy
profiles, given that the other players’ strategies will remain unchanged. It is very important
to note that the above analysis neither examines nor assumes anything about the process
through which this steady state is reached. It is just proposed as a reasonable equilibrium
for our game’s result.

1.1.4 Matching pennies

At the matching pennies game we have two players, each of which possesses a penny8. The
two players simultaneously show a side of their coins. That is, each announces “heads” or
“tails”. If the two announcements coincide, then player 2 gives his penny to player 1. If
they differ, player 1 pays player 2. We summarize at the following 2× 2 matrix:

Player 2

heads tails

Player 1 heads 1, −1 −1, 1

tails −1, 1 1, −1

Table 1.3: Matching Pennies

Let us see what happens if we try to locate equilibria similar to those we proposed at
the Battle of Sexes game of subsection 1.1.3: Assume that Player 1 intends to play heads.
Then Player’s 2 best response is to play tails, for a utility of 1. But the resulting strategy
profile (heads, tails) could not be a steady result for our game, because Player 1 would be

8That is $0.01. The exact amount is irrelevant to our analysis, so we decide here to keep the original
formulation of the game, although inflation has made this amount look funny...

7

CHAPTER 1. GAME THEORY

better of changing his strategy to tails. Then, again Player 2 would have an incentive to
change the strategy profile from (tails, tails) to (tails,heads), and so on. This could go on
forever, making “circles” around the cells (strategy profiles) of our game matrix. So, in
this case, the best-response procedure of the Battle of Sexes deviates in an obvious way: no
“convergence” to a simple stable solution is possible.

In order to overcome this obstacle we use an approach which may seem unnatural at
a first glance, however computer scientists will feel straight at home: we randomize. The
term, of course, is very general but here we mean something very simple: instead of asking
each player to report his selected strategy, why don’t we ask him to report probabilities
with which he is going to play each strategy. For example, Prisoner 1 of the Prisoner’s
Dilemma (see table 1.1) could say that “I am going to confess with probability p = 1

3 and
remain silent with probability p ′ = 2

3”. Notice that, since these are the only choices of the
player, p+ p ′ = 1

3+
2
3 = 1. These probabilities, one for each strategy of our player, ordered

together on a tuple is the mixed strategy played by our player. In the above example, all
the 2-vector (p, p ′) with p + p ′ = 1, p, p ′ ≥ 0 are the possible mixed strategies of Prisoner
1. To distinguish them from the simple strategies, we call the latter pure strategies.

Essentially, mixed strategies are probability distributions on the set of pure strategies.
Of course, when mixed strategies are used, the utilities-payoffs are conditional upon the
probabilities of the pure strategies. Let us demonstrate the notions just introduced, by con-
centrating on our Matching Pennies game (see table 1.3). Suppose Player 1 plays heads with
probability p1 and tails with p2, i.e. his mixed strategy is (p1, p2). Suppose Player’s 2 mixed
strategy is (q1, q2). Translating this in pure strategies, pure strategy profile (heads,heads)
is played with a probability of9 p1q1, (heads, tails) with p1q2, (tails,heads) with p2q1 and
(tails, tails) with p2q2. Thus, the expected utilities our players receive are

u1 = p1q1 · 1+ p1q2 · (−1)+ p2q1 · (−1)+ p2q2 · 1

= (p1− p2)(q1− q2)

u2 = p1q1 · (−1)+ p1q2 · 1+ p2q1 · 1+ p2q2 · (−1)

=−(p1− p2)(q1− q2)

We will try to deploy a best-response analysis, similar to what we did for the Battle
of Sexes game (see subsection 1.1.3). Suppose Player 2 decides to play heads and tails with
equal probabilities, that is q1 = q2 =

1
2 . Then, Player’s 1 expected utility becomes u1 =

(p1 − p2)(
1
2 −

1
2) = 0, which is independent of his choices (probabilities (p1, p2)). That

means that Player 1 is indifferent between his (mixed) strategies. In an analogous way,

9Remember, players play independently.

8

1.2. BASIC SOLUTION CONCEPTS

we can see that, if Player 1 plays (12 , 1
2) then Player 2 is indifferent between his strategies.

All the above show that if both players play (12 , 1
2) then non of them has an incentive to

deviate and change his probabilities (his mixed strategy). So, the mixed strategy profile
((12 , 1

2), (
1
2 , 1

2)) could serve well as an equilibrium10 for our game.

1.2 Definitions and Basic Solution Concepts

In this section we formally introduce the notions we intuitively met at the previous, in-
troductory section 1.1. Here we do not spend much time pointing out all the underlying
ideas behind the definitions, as we believe that section 1.1 serves well this purpose.

First of all, we must present a rigorous mathematical definition of what a game really
is, otherwise we are unable to make even a single solid step towards the rest of this project.

DEFINITION 1.1 (Game) A (strategic) game11 G =
�

N ,{Si}i∈N ,{ui}i∈N
�

consists of:

• a finite set of playersN ,N = {1,2, . . . ,N}

• for every player i ∈N , a set of (pure) strategies Si and

• for every player i , a payoff (or utility) function ui : S −→R where, S =
∏N

i=1 Si is
the set of all possible strategy profiles.

If |Si | < ∞ for all i ∈ N , i.e. every player has a finite set of pure strategies, the game
is called finite. In this thesis we will be primarily interested in finite games, due to the
nature of the problems we are going to study and of course Computer Science itself. At
section 1.1, we saw that a two player game at which each player has two (pure) strategies can
be represented through a 2× 2 matrix at every entry (cell) (i.e. coordinates of strategies)
of which resides an (ordered) pair of the players’ utilities for the corresponding strategy
profile. If we do not like our matrix consisting of pairs of real values, we can separate
this matrix to two matrices, one for the utilities of each player. The first one takes the
utilities of the first player (the first coordinate of the ordered pairs) and the other those of
the second player. The above concise representation of our simple two-player, two-srtategy
game can be generalized for arbitrary two-player finite games. At the following we assume

10This result has also a very strong natural interpretation. It tells us that a game like the Matching Pennies
would eventually result to the players tossing the (unbiased) coin, instead of choosing what side to report.

11These are also called games in normal form. This is to make a contrast with the extensive form primarily
used to model time-dynamic games such as multi-stage and repeated games. Extensive form games are very
powerful and compose the richest areas within Game Theory, however we are not going to need them
explicitly in this thesis and so the interested reader is referred to [Mas-Colell et al., 1995, chapter 9] for a
(generous) introduction and to [Fudenberg and Tirole, 1991, parts II, IV] for a more extended analysis on
the subject.

9

CHAPTER 1. GAME THEORY

we have fixed some ordering upon the (finite) sets of our players’ strategies, that is, for
every player i we can see its finite strategy set Si as an ordered tuple

Si =
�

si ,1, si ,2, . . . , si ,ni

�

where ni = |Si |.

DEFINITION 1.2 (Utility matrix) Let G = ({1,2} ,{S1, S2} ,{u1, u2}) be a two-player
game with |Si | = ni . The utility matrix of some player i is the matrix UG

i ∈ R
n1×n2 for

which
(UG

i) j1 j2
= ui (s1, s2).

DEFINITION 1.3 (Game matrix) LetG = ({1,2} ,{S1, S2} ,{u1, u2}) be a two-player game
with |Si |= ni . The matrix of G is the matrix UG ∈ (R2)n1×n2 for which

UG
j1 j2
=
�

(UG
1) j1 j2

, (UG
2) j1 j2

�

Because of Definition 1.2, the expression at Definition 1.3 is equivalent to

UG
j1 j2
= (u1(s1, s2), u2(s1, s2),)

which makes the notation a little lighter. The matrix representation of strategic games
is the reason why games with only two players are also called bimatrix games. They need
only two matrices, the uitility matrices of the players to be described completely. There are
also two other special classes of games that can be easily defined using the matrix notation.
Zero-sum games are two-player games for which UG

1 +UG
2 = 0n1×n2

, the zero n1×n2matrix.
The Matching Pennies game (table 1.3) is a zero-sum game. Such games possess some very
“nice”. Another interesting class is that of symmetric games. These are two-player games
with UG

1 =
�

UG
2

�T
(obviously, n1=n2). Intuitively, this means that we do not care about

the identities of the players since they have the same set of strategies and also can switch
positions without changing their utilities. Of course, this notion can be generalized for
games with more than two players.

The first solution concept to be formally presented is that of dominant strategies. It is
the “strongest” (and probably the most straightforward) solution concept we are going to
need and we informally introduced it during the analysis of the Prisoner’s Dilemma game
(see table 1.1 and subsection 1.1.2, page 5). It is also probably the most widely used one in

10

1.2. BASIC SOLUTION CONCEPTS

Algorithmic Mechanism Design, due to its worst-case character and its solid and natural
interpretation.

DEFINITION 1.4 (Dominant Strategy Equilibrium12) LetG =
�

N ,{Si}i∈N ,{ui}i∈N
�

be a game. A (pure) strategy profile (s ∗1 , s ∗2 , . . . , s ∗N) is a dominant strategy equilibrium for our
game G if, for every i ∈N , s ∗i is a dominant strategy for player i , i.e.13

ui (s
∗
i , s−i)≥ ui (si , s−i) for all si ∈ Si , s−i ∈ S−i .

Whatever s−i the other players choose to play, s ∗i is the best choice for player i . Notice,
however, that nothing in Definition 1.4 demands our game to necessarily have only a single
dominant strategy equilibrium. In fact one can easily think of (infinite) games with infinite
many dominant strategy equilibria. Consider for example the trivial game at which all
players have the same utility for every possible strategy profile.

At a first glance, this may seem as a drawback since we think of our “strongest” solution
concept as something very specific. We could overcome this obstacle by demanding the in-
equality of Definition 1.4 to be a strict one. Then we would have the notion of strict dom-
inant strategies and it is trivial to check that no game can have two distinct strict dominant
strategy equilibria. In this context one would call our notion of dominant strategies of Def-
inition 1.4 as a weak dominant strategy equilibrium. This approach is indeed followed in
most Game Theory and Microeconomic Theory textbooks. However, our central subject
in this thesis would be Mechanism Design (and in particular Algorithmic Mechanism De-
sign) in the context of which such a notion of strict dominant strategy equilibria would be
very restricting. One other reason for which the possible existence of many different domi-
nant strategy equilibrium points is not really a problem for us, is that all these equilibria are
in some way (which we are going to explain right away) equivalent to each other. It is triv-
ial to check from the inequality of Definition 1.4 that if (s ∗1 , s ∗2 , . . . , s ∗N) and (t ∗1 , t ∗2 , . . . , t ∗N)
are two dominant strategy equilibria then ui (s

∗
1 , s ∗2 , . . . , s ∗N) = ui (t

∗
1 , t ∗2 , . . . , t ∗N) for every

player i . In an Economic Theory perspective, one would say that every player i is in-
different among the different dominant strategy equilibria points, since they all yield the
same utility for him. From a “utilitarian” point of view all these equilibria are equivalent.

13Here we use some notation standard in Game Theory: If a = (a1,a2, . . . ,an) is a n-vector, then for every
i = 1,2, . . . , n,

(ai ,a−i) = a and a−i = (a1, . . . ,a−i ,ai+1, . . . ,an)

and generally
(b ,a−i) = (a1, . . . ,ai−1, b ,ai+1, . . . ,an).

11

CHAPTER 1. GAME THEORY

This utilitarian, indifference approach has a central role in Microeconomic Theory and
the interested reader is referred to any introductory textbook in Microeconomics for a
first introduction to these ideas (e.g. see [Schotter, 2001, chap. 2])

The next solution concept, was presented informally during the analysis of the Battle
of Sexes game at subsection 1.1.3:

DEFINITION 1.5 (Pure Nash Equilibrium) LetG =
�

N ,{Si}i∈N ,{ui}i∈N
�

be a game.
A (pure) strategy profile (s ∗1 , s ∗2 , . . . , s ∗N) is a pure Nash equilibrium for our game G if, for ev-
ery i ∈N , s ∗i is a best response of player i to the other players’ strategies s ∗−i , i.e.

ui (s
∗
i , s ∗−i)≥ ui (si , s ∗−i) for all si ∈ Si .

Obviously the pure Nash equilibrium solution concept is weaker than that of dominant
strategies and it’s easy to see that every dominant strategy equilibrium is also a pure Nash
equilibrium. As in the case of dominant strategies, Definition 1.5 allows for a game to have
multiple pure Nash equilibria. The example of the trivial game having infinitely many
dominant strategy equilibria, which we gave right after Definition 1.4, will suffice since
every dominant strategy equilibrium is also a pure Nash equilibrium. Alternatively, think
of the two-player, two-strategy game with matrix

Player 2

s2,1 s2,2

Player 1
s1,1 3, 3 1, 1

s1,2 1, 1 2, 2

One can quickly check trough Definition 1.5 that matrix entries (1,1) and (2,2) (i.e. strat-
egy profiles (s1,1, s2,1) and (s1,2, s2,2)) are pure Nash equilibria for that game. Notice, how-
ever, that these two equilibrium points do not yield the same utilities for the players. At
the first one players receive a utility of 3 and at the second one a strictly less utility of 2.

This is a very important difference between dominant strategy and pure Nash equi-
libria. That means we can not treat the different pure Nash equilibria of a game as being
equivalent (in the sense of indifference to the players) and so special care should be taken
when using this solution concept to define further game properties. We should always have
this kind of “classification” of our game’s pure Nash equilibria at the back of our mind, no
matter how subtle (or difficult) this may be when trying to take these solution concepts as
“black boxes”. Of course, the above phenomenon is a consequence of weakening the equi-

12

1.3. MIXED STRATEGIES AND NASH EQUILIBRIA

librium conditions and having a more “versatile” solution concept than that of dominant
strategies.

At the opposite side of the possibility of a game to have more than one pure Nash
equilibria, there is also the possibility of a game to have no pure Nash equilibria (and thus,
also no dominant strategy equilibria) at all. Recall, for example, the Matching Pennies game
at subsection 1.1.4. This is certainly an important disadvantage of the solution concepts
we have presented so far and which, although being quite natural and strong, they surely
cannot be applied to the general class of strategic game. The challenge here is to come up
with the right relaxation technique in order to weaken our equilibrium conditions but also
to ensure a nontrivial new solution concept.

1.3 Mixed Strategies and Nash Equilibria

In this section we proceed with relaxing the equilibrium conditions of our solution con-
cepts even more, in order to get a rather flexible and general solution concepts. Towards
doing that we deploy a favorite technique of Computer Science: randomization. Of course,
when John Nash introduced the notion of mixed equilibria in 1950 he couldn’t possibly
know of Computer Science as a well formed scientific discipline. However, looking today
at the following definition we can clearly see a simple, yet clear and elegant randomization
design technique.

DEFINITION 1.6 (Mixed Strategies) Let G =
�

N ,{Si}i∈N ,{ui}i∈N
�

be a game. A
mixed strategy σi of player i ∈ N is a probability distribution over Si , the set of player’s i
pure strategies. In particular, if G is finite and |Si | = ni ∈ N, then a mixed strategy can be
viewed as a tuple

σi = (p1, p2, . . . , pni
)

where
∑ni

j=1 p j = 1 and p j ≥ 0 for all j = 1,2, . . . , ni .

It is trivial to see that every pure strategy is also a mixed strategy, in particular si , j =
(p1, p2, . . . , pni

) where pk = 0 for all k 6= j and p j = 1, i.e. player i plays its j -th pure
strategy, si , j with certainty. We will denote player’s i set of all possible mixed strategies by
Σi . Then, naturally enough, the set of all mixed strategy profiles (possible outcomes) of our
game is Σ=

∏N
i=1Σi .

Note also that in a mixed strategy setting, rationality implies that each player acts as to
maximize his expected utility, the expectation taken over her pure strategies following her

13

CHAPTER 1. GAME THEORY

mixed strategy distribution. In the case of finite games, this is given by the expression

E
s1∼σ1,s2∼σ2,...,sN∼σN

�

ui (s1, s2, . . . , sN)
�

=
n1
∑

j1=1

n2
∑

j2=1

· · ·
nN
∑

jN=1

p1, j1
p2, j2

. . . pN , jN
ui (s1, j1

, s2, j2
, . . . , sN , jN

).

(1.1)
We used, implicitly, a simplified form of this expression for two players and two strate-
gies when we analyzed the Matching Pennies game at subsection 1.1.4. For the sake
of readability we will slightly abuse notation and denote this expected utility simply by
ui (σ1,σ2, . . . ,σN), interpreting it naturally as the utility of the mixed strategy profile.

DEFINITION 1.7 (Nash Equilibrium) Let G =
�

N ,{Si}i∈N ,{ui}i∈N
�

be a game. A
mixed strategy profile (σ∗1 ,σ∗2 , . . . ,σ∗N) is a (mixed) Nash equilibrium for our game G if, for
every i ∈ N , σ∗i is a best response mixed strategy of player i to the other players’ mixed
strategies σ∗−i , i.e.

ui (σ
∗
i ,σ∗−i)≥ ui (σi ,σ

∗
−i) for all σi ∈Σi .

Again, it is easy to compare Definition 1.7 to Definition 1.5 and see that every pure Nash
equilibrium is also a mixed Nash equilibrium, leading to the following hierarchy of the sets
of equilibrium points of a game:

�

dominant strategy
	

⊆
�

pure Nash
	

⊆
�

mixed Nash
	

.

The most well-known result in Game Theory, and conceivably the reason for estab-
lishing the mixed Nash equilibrium as the predominant solution concept in the field, is
the following theorem which ensures us that this solution concept is as general as one will
hope to:

THEOREM 1.8 (NASH, 1950) Every finite game (in normal form) has at least one (mixed)
Nash equilibrium.

PROOF A formal proof of this result is out of the scope of this thesis, however we
believe that its detailed study is of utmost importance14 to everyone who takes the study
of Game Theory seriously. It is an existential, non-constructive proof based on fixed-
point theorems. Both Brouwer’s and its gneralization, Kakutani’s fixed-point theorem
(see [Mas-Colell et al., 1995, p. 952–953]) can be used to arrive to the result 15. More

14In the words of Fudenberg and Tirole [1991, p. 29]:“... this is the archetypal existence proof in game
theory ...”

15And actually Nash himself used both of them, publishing two versions of the proof in two papers. For
more details see the Notes section 1.5.

14

1.4. CHARACTERIZING NASH EQUILIBRIA

information about Nash’s theorem and its proof are given to the Notes section 1.5 of
this chapter. o

1.4 Characterizing Nash Equilibria

When presenting the various solution concepts for our games, we didn’t bother at all with
how a system of players is stabilized at such an equilibrium. We are interested in the fi-
nal stable state and we don’t want to describe possible procedures through which those
equilibria are reached nor to justify the arrival at such states. Although this is a common
approach in Economics (as a social science), we would like to have an algorithm for find-
ing mixed Nash equilibria in a strategic game (from Nash’s Theorem 1.8 we are sure that
such an equilibrium always exists). In addition, since computational complexity is a major
issue in Computer Science, we would hope for an efficient algorithm to do that, not only
for its theoretical importance but also for the practical applications of Algorithmic Game
Theory in electronic markets, auctions, communication networks, routing and scheduling
problems, etc16.. However, as explained in the Notes section 1.5, all evidence is against the
existence of such a computationally efficient algorithm and in this section we provide some
characterizations for equilibria points which, in some occasions and especially when our
games are “small” (e.g. two-player, two-strategy games), can help us locate Nash equilibria.

PROPOSITION 1.9 Let G =
�

N ,{Si}i∈N ,{ui}i∈N
�

be a finite game, |Si |= ni . A mixed
strategy profile (σ∗1 ,σ∗2 , . . . ,σ∗N), where σ∗i = (pi ,1, pi ,2, . . . , pi ,ni

), is a Nash equilibrium if
and only if, for every player i ,

pi , j 6= 0 =⇒ ui (si , j ,σ
∗
−i)≥ ui (σi ,σ

∗
−i) for all σi ∈Σi

i.e. pure strategy si , j is also a best response mixed strategy to σ∗−i , for all j = 1,2, . . . , ni .

PROOF

(=⇒) Let σ∗ = (σ∗1 ,σ∗2 , . . . ,σ∗N) be a Nash equilibrium for G . Fix some player i and
some pure strategy si , j ∈ Si for which pi , j 6= 0. We can also restrict our attention to the
case of pi , j < 1 since, if pi , j = 1 then mixed strategy σ∗i “collapses” to the pure strategy
si , j and thus, trivially ui (si , j ,σ

∗
−i) = ui (σ

∗
i ,σ∗−i) ≥ ui (σi ,σ

∗
−i) for all possible σi ∈ Σi ,

since (σ∗i ,σ∗−i) is a Nash equilibrium (recall Definition 1.7). To arrive to a contradiction,
assume that si , j is not a best response strategy to σ∗−i , that is, there exists a mixes strategy

16For a better taste of the numerous applications of Algorithmic Game Theory to economic, social, com-
putational and engineering problems the reader is referred to the standard, in that area, reference of Nisan
et al. [2007].

15

CHAPTER 1. GAME THEORY

σi for player i such that ui (si , j ,σ
∗
−i) < ui (σi ,σ

∗
−i). But (σ∗i ,σ∗−i) is a Nash equilibrium,

thus
ui (si , j ,σ

∗
−i)< ui (σ

∗
i ,σ∗−i). (1.2)

We know, based on (1.1), that

ui (σ
∗
i ,σ∗−i) = pi ,1ui (si ,1,σ

∗
−i)+ pi ,2ui (si ,2,σ

∗
−i)+ · · ·+ pi ,ni

ui (si ,ni
,σ∗−i) (1.3)

so inequality (1.2) gives

ui (si , j ,σ
∗
−i)< pi ,1ui (si ,1,σ

∗
−i)+ pi ,2ui (si ,2,σ

∗
−i)+ · · ·+ pi ,ni

ui (si ,ni
,σ∗−i)

or, equivalently,

ui (si , j ,σ
∗
−i)<

1

1− pi , j

ni
∑

k=1
k 6= j

pi ,k ui (si ,k ,σ∗−i).

So, from (1.3) we have:

ui (σ
∗
i ,σ∗−i) = pi , j ui (si , j ,σ

∗
−i)+

ni
∑

k=1
k 6= j

pi ,k ui (si ,k ,σ∗−i)

<
pi , j

1− pi , j

ni
∑

k=1
k 6= j

pi ,k ui (si ,k ,σ∗−i)+
ni
∑

k=1
k 6= j

pi ,k ui (si ,k ,σ∗−i)

=
ni
∑

k=1
k 6= j

pi ,k

pi , j

1− pi , j

+ 1

!

ui (si ,k ,σ∗−i)

=
ni
∑

k=1
k 6= j

pi ,k

1− pi , j

ui (si ,k ,σ∗−i). (1.4)

Recall that σ∗i = (pi ,1, pi ,2, . . . , pi ,ni
) is a mixed strategy, so we know that

∑ni

k=1
pi ,k =

1. Also pi , j 6= 0.Using these it is easy to verify that both following conditions hold:

ni
∑

k=1
k 6= j

pi ,k

1− pi , j

= 1 and 0≤
pi ,k

1− pi , j

≤ 1.

That means that σi = (q1, q2, . . . , qni
) with qk =

pi ,k

1−pi , j
for k 6= j and q j = 0, is a valid

16

1.4. CHARACTERIZING NASH EQUILIBRIA

mixed strategy for player i and

ui (σi ,σ
∗
−i) =

ni
∑

k=1

qk ui (si ,k ,σ∗−i)

=
ni
∑

k=1
k 6= j

pi ,k

1− pi , j

ui (si ,k ,σ∗−i)

> ui (σ
∗
i ,σ∗−i), from (1.4),

which contradicts the fact that (σ∗i ,σ∗−i) is a Nash equilibrium.
(⇐=) For the opposite direction, fix some player i and let σ∗ = (σ∗1 ,σ∗2 , . . . ,σ∗N) be a

mixed strategy profile for which

pi , j 6= 0 =⇒ ui (si , j ,σ
∗
−i)≥ ui (σi ,σ

∗
−i) for all σi ∈Σi (1.5)

for every j = 1,2, . . . , ni . Then, for every possible mixed strategy σi for player i ,

ui (σ
∗
i ,σ∗−i) =

ni
∑

j=1

pi , j ui (si , j ,σ
∗
−i) =

ni
∑

j=1
pi , j 6=0

pi , j ui (si , j ,σ
∗
−i)

≥
ni
∑

j=1
pi , j 6=0

pi , j ui (σi ,σ
∗
−i), from (1.5),

= ui (σi ,σ
∗
−i) ·

ni
∑

j=1
pi , j 6=0

pi , j = ui (σi ,σ
∗
−i) · 1= ui (σi ,σ

∗
−i). o

The intuition behind the proof is that, if some pure strategy was suboptimal then we could
eliminate it (assigning zero probability) and increase the weights of the other strategies in
order to arrive to a new mixed strategy with strictly greater utility. Here, the linearity of
expression (1.1) plays a major role.

An equivalent formulation of Proposition 1.9 is that of the following corollary, which
is somehow more straightforward as far as computations for finding a Nash equilibrium
are concerned. In words, it says that σ∗ is a Nash equilibrium if and only if every player
is indifferent among the pure strategies comprising the support of its mixed strategy σ∗i .
Formally:

COROLLARY 1.10 LetG =
�

N ,{Si}i∈N ,{ui}i∈N
�

be a finite game and σ∗ = (σ∗1 ,σ∗2 , . . . ,σ∗N)
a mixed strategy profile, where S ′i ⊆ Si is the support of σ∗i . Then σ∗ is a Nash equilibrium

17

CHAPTER 1. GAME THEORY

if and only if, for every player i there is an αi ∈R such that

ui (si , j ,σ
∗
−i) = ai for all si , j ∈ S ′i

and ui (si , j ,σ
∗
−i)≤ ai for all si , j ∈ Si \ S ′i .

Usually the following sufficient (but not necessary) condition is a better choice, when
we want to “quickly” check for a Nash equilibrium in “small” games. We essentially used
this at subsection 1.1.4 to find/justify (12 , 1

2) being a Nash equilibrium for the Matching
Pennies game:

COROLLARY 1.11 LetG =
�

N ,{Si}i∈N ,{ui}i∈N
�

be a finite game and σ∗ = (σ∗1 ,σ∗2 , . . . ,σ∗N)
a mixed strategy profile such that for every player i there is an αi ∈R with

ui (si , j ,σ
∗
−i) = ai for all si , j ∈ Si .

Then σ∗ is a Nash equilibrium.

Notice that the condition in Corollary 1.11 generates a set of |Si |·(|Si |−1)
2 equations of utility

indifference for every player.

Finally, we must point out that in no way we claim that the characterizations presented
in this section are the most efficient way to find a Nash equilibrium, in fact they are far
away from achieving this goal and their importance lies more on their elegant characteriza-
tion conditions. In practice, more efficient procedures (such as the pivotal Lemke-Howson
algorithm) are used, even in the simplest case of bimatrix (two-player) games (see von Sten-
gel [2007]). For more one these computational issues see the Notes section 1.5.

1.5 Notes

Our exposition in this chapter is based on several standard reference textbooks in Game
Theory, namely [Fudenberg and Tirole, 1991], [Mas-Colell et al., 1995, part 2] and [Os-
borne and Rubinstein, 1994]. Here, we only gave a small glimpse of the beautiful and
intriguing field of Game Theory, based only on what we are going to need to properly
present the remaining material of this thesis. We recommend the first two of the above
books for a further study of the subject, as well as [Tardos and Vazirani, 2007] for a well-
balanced, Computer Science oriented introduction. For a more lighter, yet complete treat-
ment, we refer to the undergraduate textbook of Osborne [2004].

18

1.5. NOTES

Nash’s Theorem 1.8 was first presented and proved (obviously by Nash...) in [Nash,
1950], using Kakutani’s fixed point theorem. A second, somehow more elegant proof was
given one year later again by Nash in his landmark paper [Nash, 1951], this time using
Brouwer’s fixed point theorem. The proof there is elegant, coherent and rather fundamen-
tal and, although it can nowadays be found in every (serious) graduate textbook in Game
Theory or Microeconomic Theory, we recommend studying it through the original paper
of Nash [1951]. It is a real pleasure. This paper also laid the foundations of what is known
today as noncooperative Game Theory. The exposition is clear and powerful and thus that
paper is, once more, highly recommended. The origins of modern Game Theory go back
to the seminal work of von Neumann and Morgenstern [1953] where an extensive study
of zero-sum games was carried out, as well as a formulation of what is known today as
cooperative Game Theory.

The dependence of Nash’s proof on Brouwer’s fixed point theorem (ironically enough17)
forces the proof to have a strictly non-constructive character and, although during the years
proofs of Brouwer’s fixed point theorem with some constructive nature have been discov-
ered, these do not yield computationally efficient algorithms. There are strong indications
that finding a fixed point (in Brouwer’s theorem) is an intractable problem. This com-
putational hardness is also inherited to the problem of finding a mixed Nash equilibrium
of a strategic game. Notice, however, that this intractability is not meant in the sense of
NP-completeness, simply because these problems are not decision (yes-no) problems. We
know that every game does have a Nash equilibrium (trivially from Nash’s theorem), the
question is how to find one efficiently (preferable in polynomial time). It turns out that
the right complexity class to study these problems is PPAD, introduced in [Papadimitriou,
1994]. Complexity issues play a leading role in the filed of Algorithmic Game Theory, but
we have already gone well beyond the scope of our thesis towards that direction. For a
rather complete introduction to this area we recommend [Papadimitriou, 2007], as well as
the very important paper of Daskalakis, Goldberg, and Papadimitriou [2006].

17L. E. J. Brouwer (1881–1966) was a constructivist mathematician, probably the most notable representa-
tive of intuitionistic mathematics. However, his fixed point theorem we cite here, one of his most famous
results, utilizes a non-constructive proof in the most absolute way (e.g. see [Hatcher, 2002, Corollary 2.15]).

19

CHAPTER 1. GAME THEORY

20

Chapter 2

Mechanism Design

In the previous Chapter 1 we proposed some basic notions from Game Theory as a frame-
work to study a (rather primitive, though powerful) form of strategic interaction between
rational players. This framework has two main characteristics which are also its limita-
tions:

1. It is totally passive. Players simply “enter” the game and we rely on the “wisdom of
economics”1 that the game will result in a stable state at which the combined choices
made by all players serve one and only goal: for each player to selfishly maximize her
(expected) utility. Such an environment, leaves no space for us (an external “designer”)
to have any control whatsoever on the “execution” or the desired stable state reached
by the game.

2. We have assumed that players have full information of the game’s elements (see Def-
inition 1.1, page 9). In particular, every player’s available choices and utility of every
possible game outcome (strategy profile), are common knowledge among all players.
Such an assumption, of course, is far from realistic even when we try to model some of
the most fundamental examples of strategic behaviour such as auctions, voting systems
and electronic markets.

However, these basic notions from Game Theory carry the essence of the behavior of
strategic players and thus can be used as important elements in an extended framework
which can model more realistically the problems that interest us in this thesis (mainly auc-
tions) by overcoming the above limitations. In general, we would like to be able to model
decision-making (under uncertainty) problems in which an outcome must be chosen by
the decision-maker, given information he receives from a set of participants. The crucial

1Or God...

21

CHAPTER 2. MECHANISM DESIGN

point here, which is why we use Game Theory as a basis to study such decision problems,
is that we assume that our participants are strategic, selfish players and thus, if this is to
maximize their utility, they can (without any compunction) lie about the true informa-
tion they hold and upon which our decisions must be based.

In the following section we bring down piece by piece the components of the above
intuitive description, introducing rigorously the appropriate notions.

2.1 Social Choices and Mechanisms

Every player may have various preferences over the set of all possible outcomes (decisions).
We model this by assuming that each player has a valuation function over the set of out-
comes, the value of which on a given outcome quantifies2 how much our player “values”
the specific outcome. The higher the value, the more preferred the outcome.

Before getting into the main goal of this chapter, i.e. how to assure that the “right”
decision is always made even if we have to rely on information provided by a set of strategic
players, it is essential to fix beforehand what this “right” decision would be. In general, this
will depend on the preferences of the players and will choose an outcome based on what
“social goal” we need to serve, e.g. in a voting system we usually want to choose the
candidate which maximizes the “combined social satisfaction”, i.e. receives the most votes.

DEFINITION 2.1 (Social choice function) LetN = {1,2, . . . ,N} be a finite set of play-
ers3, each of whom has a set Vi of possible valuation functions vi : O −→ R over a set of
outcomes4 O . A social choice function is a function f :

∏N
i=1 Vi −→O .

A social choice function is a rule that aggregates the preferences of the different players
(expressed through their valuation functions) to a single outcome.

After fixing a specific social choice function f :
∏N

i=1 Vi →O it may seem trivial what
one should do: simply request from the players to state their preferences by reporting their

2Alternatively, we could have assumed that every player has a total ordering (see [Cormen et al., 2001,
p. 1077]) over the set of possible outcomes, which is a more “natural” choice if one is considering settings
such as voting systems. However, we choose to numerically quantify preferences which is, trivially, a gener-
alization of the total ordering case. Not only we can tell if a player prefers one outcome from another, but
also in what extent, i.e. by “how much”, she does so. This opens the way of using “money” as a common
measure. Under the light of the famous Arrow and Gibbard–Satterthwaite theorems, such a choice is essen-
tially necessary. We have already gone beyond the scope of this thesis with respect to the current discussion
and we refer to [Nisan, 2007, 9.2-9.3]. Arrow’s theorem (from which Gibbard–Satterthwaite theorem can
be deduced as a corollary) is a most celebrated result of Social Choice Theory (and Economics, in general)
with surprising implications. The reader will certainly benefit from getting in touch with the original work
of Arrow [1951]. Some less involved proofs of this classic result can be found in [Geanakoplos, 2005]. The
Gibbard–Satterthwaite are, naturally enough, due to Gibbard [1973] and Satterthwaite [1975].

3Also called agents, especially in some computational settings.
4Also called alternatives, especially in the context of classic (microeconomic) Social Choice Theory.

22

2.1. SOCIAL CHOICES AND MECHANISMS

valuation functions and then calculate the value of f . This value is the decision we must
make. However, this is far from being the case due to some major implications that have
to do with the decision-making model which we have adopted. First, players do not, in
general, have to report their valuations but some other kind of information–message to
the decision-maker. And, above all, even if their messages are restricted to reports of their
valuations, there is no guarantee that they will actually report truthfully to us. Remember
that they are selfishly rational and they only care about maximizing their utility rather than
helping us make the right decision. Such misreports may have devastating consequences,
because they can lead us to compute a value of f that is far from desired with respect to
our fixed “social goal” that f implements.

All these make necessary the extension of the notion of full information (strategic)
games we introduced in Definition 1.1, page 9:

DEFINITION 2.2 (Strict incomplete information)
A game Γ =

�

N ,{Θi}i∈N ,{Ai}i∈N ,{ui}i∈N
�

of strict incomplete information consists
of:

• a finite set of playersN ,N = {1,2, . . . ,N}

• for every player i ∈N , a set of types Θi

• for every player i ∈N , a set of actions Ai and,

• for every player i , a utility function ui :Θi ×
∏N

i=1 Ai −→R.

The set of strategies of player i in this incomplete information setting is Si = Ai
Θi , i.e. a

strategy of player i is a function si :Θi −→Ai .

Notice that the strategy sets Si need not to be in the description of Γ (as they were in
Definition 1.1) since they are completely determined by Ai and Θi .In our usual notation,
Θ =

∏N
i=1Θi will denote the set of all possible type profiles and A =

∏N
i=1 Ai the set of

action profiles.
Type θi represents any private information player i has. This is only known to player

i , in contrast to the standard, full-information case of Chapter 1. This may include, for
example, her utility function ui . In classic (economic) Game Theory, we usually suppose
that player i has some (reliable) distributional assumptions about other players’ types (pri-
vate information), included in her private type θi . This models are known as Bayesian
games5. Here, as one can easily verify, we have not made any assumptions at all regard-
ing probabilistic information included in the types of Definition 2.2. We make such a

5More on Bayesian games can be found in the references proposed in the Notes section 2.4 of our chapter.

23

CHAPTER 2. MECHANISM DESIGN

choice because we want to study the main problems of this thesis (presented later on in
Part C) under a worst-case analysis perspective, standard in Computer Science. We call
our model game of strict incomplete information6 to point out the lack of further assump-
tions. Furthermore, although games of strict incomplete information are generalizations
of Bayesian games, the fundamental results in classic Mechanism Design continue to hold
in our “strict” framework and sometimes, especially to computer scientist, are much more
easy and natural to prove and interpret.

The intuition behind the Definition 2.2 is the following: Initially, each player i chooses
what action ai = si (θi) ∈ Ai she will take if her type turns out to be θi ∈ Θi , tak-
ing into consideration the utility ui (θi ,a) that each possible type θi –action profile a =
(a1,a2, . . . ,aN) combination will give her. Remember that players are rational and selfish
and their only goal is to maximize their expected utility. The crucial detail here, which is
the essence of the incomplete information case, is that every player i does not, in general,
have any knowledge at all7 about the other players’ utility functions and types, thus she
can make no reliable predictions of what other players are going to play based on the ra-
tionality principle (as was the case in Chapter 1). Next, agent i realizes her type θi ∈ Θi ,
in a way beyond her control. It is useful to think of “nature” determining the “correct”
assignment of types to every player and their nothing they can do about it. Obviously,
after the realization of all players’ types, the action profile is completely determined by the
strategy functions already played by our players.

We must point out here that such an interpretation of incomplete games is strongly
intuitive and in no way implies that such a two-step, well defined procedure takes place.
In the contrary, as we have argued before in Chapter 1, we do not bother at all with the
procedures through which game outcomes and stable states are reached. Instead we view it
as a complex phenomenon whom results can only observe and justify.

After a type is fixed for every player, the “layer” of incomplete information can be re-
moved from the general Definition 2.2, inducing a full information (strategic) game where
the strategies are essentially the actions available to our players:

DEFINITION 2.3 Let Γ =
�

N ,{Θi}i∈N ,{Ai}i∈N ,{ui}i∈N
�

be a game of strict incom-
plete information. Fix a type profile θ = (θ1,θ2, . . . ,θN) ∈ Θ. The full information game
defined by Γ and t is the strategic game Γ(θ) =

�

N ,
¦

S ′i
©

i∈N
,
¦

u ′i
©

i∈N

�

for which

• S ′i =Ai and

• u ′i (s
′
1, s ′2, . . . , s ′N) = ui (θi , s ′1, s ′2, . . . , s ′N),

6This is not a standard term in the field and one may also stumble upon the term pre-Bayesian.
7strict incomplete, bayesian

24

2.1. SOCIAL CHOICES AND MECHANISMS

for all players i ∈N and strategy profiles (s ′1, s ′2, . . . , s ′N) ∈
∏N

i=1 S ′i (=
∏N

i=1 Ai).

Next, we go on by introducing the basic solution concept we are going to use in our
incomplete information setting, that of dominant strategy equilibrium. It is a natural adap-
tation of the dominant strategy equilibrium used in the full information case of Chapter 1
(see Definition 1.4, page 11). However, in order to “conserve” the strength and stability of
the classic dominant strategies notion, we demand every possible realization of types that
may occur to result in a (full information) game possessing the desired dominant strategy
equilibrium. This is, as expected, an extremely strong (and thus possibly restricting) solu-
tion concept but, once achieved, it serves as the best framework to perform our worst-case
analysis.

DEFINITION 2.4 (Incomplete information dominant strategy equilibrium) Let Γ=
�

N ,{Θi}i∈N ,{Ai}i∈N ,{ui}i∈N
�

be a strict incomplete information game. A strategy pro-
file (s ∗1 , s ∗2 , . . . , s ∗N) is a dominant strategy equilibrium for our game Γ if, for every type profile
θ= (θ1,θ2, . . . ,θN), (s

∗
1 (θ1), s ∗2 (θ2), . . . , s ∗N (θN)) is a dominant strategy equilibrium for the

full information game Γ(t), i.e. for every i ∈N ,

ui (θi , s ∗i (θi),a−i)≥ ui (θi ,ai ,a−i) for all ai ∈Ai , a−i ∈A−i .

It is now time to use all the power that Game Theory gives us, through incomplete
information games, to model properly the decision-making environment we use to work
in.

DEFINITION 2.5 (Mechanism environment) A mechanism environment
E =

�

N ,{Θi}i∈N ,{Ai}i∈N ,O ,{vi}i∈N
�

consists of:

• a finite set of playersN ,N = {1,2, . . . ,N}

• for every player i ∈N , a set of types Θi

• for every player i ∈N , a set of actions Ai

• a set of outcomes O and,

• for every player i , a valuation function vi :Θi ×O −→R.

Note that, in giving the above Definition 2.5 we are strongly motivated by Definition 2.1
and the idea of applying some desired social choice in our decision-making. The use of a
valuation function is a strong evident of that and, although the Social Choice background

25

CHAPTER 2. MECHANISM DESIGN

of Definition 2.5 may not be so obvious now, it will become apparent at Definition 2.8,
page 27, that follows.

Although in the Social Choice framework of Definition 2.1 we have only valuations
as the predominant form of information carried by the players, we can extend it slightly
to match our incomplete information terminology. We can assume that every player’s
valuation can be parametrized by its type θi , therefore viewing social choice functions as
f :
∏N

i=1Θi →O . This is consistent with all our exposition in this chapter and also helps
us to see social choice functions as immediate “decision-makers” taking into consideration
the players’ types.

So, as we stated in the introduction of our Chapter 2 and more solidly at the beginning
of our section 2.1 at page 22, our ultimate goal is to be able to reliably make some “socially
desirable” decision, implied by a social choice function8, in an environment of incomplete
information and, more dangerously, of selfish players that are ready to lie to us about their
true private information θi . But selfishness and rationality, are fundamental assumptions
within Game Theory and the very reason for which we chose this framework to study
our decision-making problems. Thus relaxing them is out of the question. Therefore, the
only way through which we may try to “convince” the players to tell us the truth (or,
more generally, to give us enough information in order to achieve (or estimate) the desired
social goal) is by giving them the right incentives in order to “satisfy” their selfishness.
Incentives do not need to be only “positive”, i.e. some kind of bonus, but they may very
well be negative, i.e. “penalties” subtracted from their initial utility. In such a setting,
every strategic player tries to, loosely speaking, minimize the “damage” caused to her by
the penalties enforced to her. Since in this thesis we always have the example of auctions
in the back of our minds, this is the form of incentives we are going to use: negative ones
(primarily in the form of payments, collected from the players). Naturally enough, it is
easy to reverse the situation: negative payments correspond to “bonuses”.

All matters regarding “truthfulness” are going to become clear and rigorously defined
in the next section 2.2, but for the time being we need to formalize the discussion of the
previous paragraph. We introduce the fundamental notion of a mechanism, which is es-
sentially the procedure through which we try to give incentives in order to achieve our
desired social goal. So, our mechanisms need to comprise of two major elements: the de-
cision they take (corresponding to some social choice) and the (negative) incentives they
use, here called payments, in order to ensure that players will report as we (the mechanism

8Although we often use terms like “socially desirable” and “social goal”, social choice functions do not
need to always compute social “justice” or social “welfare”. For example, in an auction setting we might only
be interested in choosing the outcome that maximizes the auctioneer’s revenue, not caring about the bidders’
“satisfaction”. However, here we choose to use the established terms in the field.

26

2.1. SOCIAL CHOICES AND MECHANISMS

designers – decision-makers) desire:

DEFINITION 2.6 (Mechanism) A mechanismM =
�

x,{pi}i∈N
�

over a mechanism en-
vironment E =

�

N ,{Θi}i∈N ,{Ai}i∈N ,O ,{vi}i∈N
�

consists of:

• a decision function x :
∏N

i=1 Ai −→O and,

• for every player i , a payment function pi :
∏N

i=1 Ai −→R.

The vector valued function p = (p1, p2, . . . , pN) : A−→RN is usually called payment vector.
As we have assumed throughout this thesis that we have some way to numerically quantify
the preferences of the players by their valuations, we will also assume from now on that, the
payments–penalties just introduced are also quantified in a similar way and furthermore
that one can subtract payments from valuations to get the quantified total utility that a
player receives if we force a penalty to him in order to reduce the initial value a decision
has for her. More concisely, we assume that we have a common numerical quantification
system between valuations, payments and utilities (see the discussion about “money” at
footnote 2 on page 22.)

Of course all these are done in a strategic interaction setting and it’s time to deploy our
valuable tools from Game Theory.

DEFINITION 2.7 (Games of mechanisms) The game Γ(M) induced by a mechanism
M =

�

x,{pi}i∈N
�

over some mechanism environment E =
�

N ,{Θi}i∈N ,{Ai}i∈N ,O ,{vi}i∈N
�

is the strict incomplete information game Γ(M) =
�

N ,{Θi}i∈N ,{Ai}i∈N ,{ui}i∈N
�

where

ui (θi ,a1,a2, . . . ,aN) = vi (θi , x(a1,a2, . . . ,aN))− pi (a1,a2, . . . ,aN),

for every θi ∈Θi , (a1,a2, . . . ,aN) ∈A.

After all this discussion, and having some examples (presumably auctions) in our minds,
one may have already felt intuitively the idea behind how a mechanism can simulate a given
social choice. However, we must state formally and clearly what qualifications we will de-
mand our mechanism to meet before declaring it acceptable to reliably implement our
desired social goal. What better choice exists other than our strong solution concept of
dominant strategies?

DEFINITION 2.8 (Implementation) Fix some mechanism environment
E =

�

N ,{Θi}i∈N ,{Ai}i∈N ,O ,{vi}i∈N
�

. We say that a mechanismM =
�

x,{pi}i∈N
�

implements (in dominant strategies) the social function f :
∏N

i=1Θi −→ O if the induced

27

CHAPTER 2. MECHANISM DESIGN

game Γ(M) has a dominant strategy equilibrium (s ∗1 , s ∗2 , . . . , s ∗N) for which

f (θ1,θ2, . . . ,θN) = x
�

s ∗1 (θ1), s ∗2 (θ2), . . . , s ∗N (θN)
�

for all (θ1,θ2, . . . ,θN) ∈Θ.

2.2 Direct Revelation Mechanisms and Truthfulness

Up to now we have tried to keep our mechanism design model as general as possible.
However, the main problems that are going to bother us in this thesis have to do with
auction settings. Consider, for example, the following simple auction environment, known
as sealed-bid auction. We have a single item to sell to one of many bidders. Each bidder
writes her bid in a sealed envelope and submits it to us. Next, we open all envelopes and
must decide whom to allocate the item to and what payment to collect from her. In such
a setting, the private information of each player is her bid (kept secret from all others) and
the messages that she can send to the auctioneer is exactly a single report of her bid. Of
course, our players are strategic, thus they may very well lie and misreport their true bid.
Such mechanisms in which a player’s action is simply a single, direct claim about her true
type are called direct revelation mechanisms and are much more simple, natural and easy to
interpret and are sufficient to model some of the most important problems in Algorithmic
Mechanism Design.

DEFINITION 2.9 (Direct revelation mechanism environment)
A direct revelation mechanism environment Ed =

�

N ,{Θi}i∈N ,O ,{vi}i∈N
�

is a mecha-
nism environment

�

N ,{Θi}i∈N ,{Ai}i∈N ,O ,{vi}i∈N
�

for which Ai =Θi for every agent
i ∈N .

If E =
�

N ,{Θi}i∈N ,{Ai}i∈N ,O ,{vi}i∈N
�

is an (arbitrary) mechanism environment, we
will denote by Ed the direct revelation “restriction” of E , i.e. Ed =

�

N ,{Θi}i∈N ,O ,{vi}i∈N
�

.

DEFINITION 2.10 (Direct revelation mechanisms) A direct revelation mechanism is
a mechanism over a direct revelation mechanism environment.

Let us return to our sealed-bid example. It is natural to assume that the true bid of
every player is a measure of how much she values the acquisition of the item9. Let us fix

9Here we will not dwell on the subject of “social inequalities”. In real life auctions, one may desire an item
more than somebody else but not be able to compete with the second player’s bid. This is the result, loosely
speaking, of a monetary unit having different value between the two players. However, it is extremely diffi-
cult and out of the scope of Mechanism Design to try and “weight out” such social inconsistencies. Instead,
we assume that our “money” is used as a fair valuation measurement and not as an indication of wealth. It is
unnecessary to mention that believing in the existence of such an ideal society is “very optimistic”, at least.

28

2.2. DIRECT REVELATION MECHANISMS AND TRUTHFULNESS

a social objective. Through out Mechanism Design we usually adopt a maximization of
social welfare10 objective. In our simple one item sealed-bid auction, the item will end up
on a single bidder, thus the social choice that we wish to implement here is the one that
gives the item to the bidder that “needs” it more, i.e. submits the higher bid. Don’t forget,
however, that our players act selfishly and they may be lying. By trusting their submitted
bids we may end up giving the item to the wrong bidder.

So, it is essential to design a mechanism that gives no incentive to agents to lie. Let
us consider the simplest, obvious mechanism that allocates the item to the highest bid-
ding player and collects a payment that equals her bid. Suppose our players (surprisingly
enough) have reported truthfully and that the wining player’s bid is p and q < p is the
second highest submitted bid. The player that wins must pay an amount which equals her
valuation, resulting to a total utility of p − p = 0 for her (see Definition 2.7, page 27). But
she could have lied, reporting a bid p ′ with q < p ′ < p, still getting the item and paying
only p ′, resulting to a total utility of p − p ′ > 0.

The above discussion shows as that the obvious, first-price auction cannot guarantee
that players will report truthfully. So, what can we try next? The idea is very simple,
though extremely brilliant and effective: let’s consider second-price auctions, i.e. auctions
that still give the item to the highest bidding player but request a payment equal to the
second highest submitted bid. It is trivial to check that by lying an bidder either loses the
item or is requested to pay an amount strictly greater that her true value, resulting to a
negative utility. Therefore, under this auction there is no way for a bidder to (strictly)
improve her utility by lying. The crucial point here is that the winning player’s payment
is independent of her bid and thus she cannot manipulate it. This second-price auction is
known as the Vickrey auction due to Vickrey [1961]who formalized this brilliant idea of
second-price payments.

By now, it is made clear that securing truthfulness for our mechanism is of major im-
portance to the mechanism designer. Knowing that the players report truthfully, we can
implement our social choices without worrying of dangerous manipulations of our proto-
cols. It is time to put down formally the notion of truthfulness:

DEFINITION 2.11 (Truthfulness) A direct revelation mechanism M =
�

x,{pi}i∈N
�

(over some environment Ed =
�

N ,{Θi}i∈N ,O ,{vi}i∈N
�

) is called dominant strategy in-
centive compatible (DSIC) or thruthful11 if, for every possible type profile (θ1,θ2, . . . ,θN),
the identity function overΘi is a dominant strategy for every player i (on the induced game

10Although this is not made clear yet, we rely on the reader’s intuition to interpret it as the decision that
maximizes the combined “happiness” of our players. Formal definitions we soon follow at section 2.3.

11The term strategy-proof is also used.

29

CHAPTER 2. MECHANISM DESIGN

Γ(M)), i.e.

ui (θi ,θi ,θ
′
−i)≥ ui (θi ,θ

′
i ,θ
′
−i) for all θ′i ∈Θi , θ

′
−i ∈Θ−i .

In words, this describes exactly what we would expect: no player can improve her utility
by lying. Put it otherwise, every player is better of telling the truth.

The most “beautiful” property of truthful mechanisms is that, not only they guarantee
simple and reliable implementation of our social choice function, but it also turns out that
they are as expressive as arbitrary (non-truthful and non-direct revelation12) mechanism.
This is surprisingly pleasant since one would expect that an arbitrary mechanism which
allows for a much richer feedback (message space) and does not apply such strong restric-
tions as that of truthfulness (in dominant strategies), would also allow us to do much more
things. All this collapses by the following famous

THEOREM 2.12 (REVELATION PRINCIPLE) LetM be a mechanism, over some mech-
anism environment E , that implements a social choice function f . Then, there is a truthful
(direct revelation) mechanism Md , over Ed , that can implement f . In addition, at the
(dominant strategy) equilibria implementing f , the payment rules ofM ′ andM are iden-
tical.

PROOF Let M =
�

x,{pi}i∈N
�

, E =
�

N ,{Θi}i∈N ,{Ai}i∈N ,O ,{vi}i∈N
�

and the in-
duced game Γ(M) =

�

N ,{Θi}i∈N ,{Ai}i∈N ,{ui}i∈N
�

. MechanismM implements f ,
so (Definition 2.8) there exists a dominant strategy equilibrium (s ∗1 , s ∗2 , . . . , s ∗N) of Γ(M)
such that

f (θ1,θ2, . . . ,θN) = x(s ∗1 (θ1), s ∗2 (θ2), . . . , s ∗N (θN)) (2.1)

for all possible type profiles (θ1,θ2, . . . ,θN) ∈ Θ. Define a direct revelation mechanism
Md =

�

x ′,
¦

p ′i
©

i∈N

�

over Ed =
�

N ,{Θi}i∈N ,O ,{vi}i∈N
�

with decision and payment
rules

x ′(θ1,θ2, . . . ,θN) = x(s ∗1 (θ1), s ∗2 (θ2), . . . , s ∗N (θN)) (2.2)

p ′i (θ1,θ2, . . . ,θN) = pi (s
∗
1 (θ1), s ∗2 (θ2), . . . , s ∗N (θN)) for every player i ∈N . (2.3)

We need to show that reporting truthfully is a dominant strategy for every player
at the induced game Γ(Md) =

�

N ,{Θi}i∈N ,{Θi}i∈N ,
¦

u ′i
©

i∈N

�

, i.e. show thatM is
truthful. We will prove that the condition in Definition 2.11 holds. Indeed, fix a player

12Recall from Definition 2.11 that truthfulness is defined only for direct revelation mechanisms.

30

2.2. DIRECT REVELATION MECHANISMS AND TRUTHFULNESS

i with (true) type θi . First notice that, because of the way in which we constructedMd ,
trivially

u ′i (θi ,θ
′
1,θ

′
2, . . . ,θ

′
N) = vi (θi , x ′(θ′1,θ

′
2, . . . ,θ

′
N))− p ′i (θ

′
1,θ

′
2, . . . ,θ

′
N)

(2.2)
= vi

�

θi , x(s ∗1 (θ
′
1), s ∗2 (θ

′
2), . . . , s ∗N (θ

′
N))
�

− pi (s
∗
1 (θ

′
1), s ∗2 (θ

′
2), . . . , s ∗N (θ

′
N))

= ui (θi , s ∗1 (θ
′
1), s ∗2 (θ

′
2), . . . , s ∗N (θ

′
N)),

(2.4)

for every type profile (θ′1,θ
′
2, . . . ,θ

′
N) ∈Θ. Next, recall that (s ∗1 , s ∗2 , . . . , s ∗N) is a dominant

strategy equilibrium of Γ(M), thus (by substituting (ai ,a−i) = (s
∗
1 (θ

′
1), s ∗2 (θ

′
2), . . . , s ∗N (θ

′
N)) ∈

A at the equation of Definition 2.4) for all possible types θ′i ∈Θi , θ
′
−i ∈Θ−i ,

ui (θi , s ∗i (θi), s ∗−i (θ
′
−i))≥ ui (θi , s ∗i (θ

′
i), s ∗−i (θ

′
−i))

and by (2.4),
u ′i (θi ,θi ,θ

′
−i)≥ u ′i (θi ,θ

′
i ,θ
′
−i),

establishing truthfulness. Here we slightly abused notation for the sake of readability,
writing (s ∗i (θi), s ∗−i (θ

′
−i)) instead of (s ∗1 (θ

′
1), . . . , s ∗i−1(θ

′
i−1), s ∗i (θi), s ∗i+1(θ

′
i+1), . . . , s ∗N (θ

′
N)).

Finally, we must show thatMd implements f , under the same payments asM does.
Fix some type profile (θ1,θ2, . . . ,θN) ∈Θ. SinceMs is truthful, Γ(Md) has a dominant
strategy equilibrium, namely that consisting of the identity strategy functions, and the
action profile that corresponds to that equilibrium is the truthful report (θ1,θ2, . . . ,θN).
At that dominant strategy equilibrium,

x ′(θ1,θ2, . . . ,θN)
(2.2)
= x(s ∗1 (θ1), s ∗2 (θ2), . . . , s ∗N (θN))

(2.1)
= f (θ1,θ2, . . . ,θN)

and the implementation follows immediately from Definition 2.8. For the payment
rules at equilibrium, we have

p ′i (θ1,θ2, . . . ,θN)
(2.3)
= pi (s

∗
1 (θ1), s ∗2 (θ2), . . . , s ∗N (θN)) o

Simply put, the Revelation Principles allows us to restrict our attention to (direct rev-
elation) truthful auctions, without loss of generality. After establishing such a positive re-
sult, we would be very happy if we had a simple way to check whether a given mechanism
is truthful or not. Of course, this may very well be done using directly Definition 2.11.

31

CHAPTER 2. MECHANISM DESIGN

However, many times this requires extensive case analysis and also does not give any design
“hints” which could be used to construct truthful mechanisms. The following proposition
gives such a characterization. It is essentially a demonstration of the characteristics that
we intuitively considered being responsible for the “success” of the Vickrey auction (see
page 29).

PROPOSITION 2.13 (Truthfulness characterization) A (direct revelation) mechanism
M =

�

x,{pi}i∈N
�

is truthful if and only if

(i) Every player’s payment pi does not depend (directly) on her type θi , but on the other
players’ types θ−i and the outcome x(θi ,θ−i) decided byM , i.e.

x(θi ,θ−i) = x(θ′i ,θ−i) := o =⇒ pi (θi ,θ−i) = pi (θ
′
i ,θ−i) := po(θ−i),

and

(ii) x decides the optimal, assuming other players’ types θ−i fixed, outcome for every player
i , i.e.

x(θi ,θ−i) ∈ argmax
o∈x(Θi ,θ−i)

�

vi (θi , o)− po(θ−i)
�

.

PROOF

(=⇒) Assume that M is truthful. We will prove that conditions (i) and (ii) hold.
For condition (i), to arrive to a contradiction, assume that there exist player i with type
θi and types θ′i ∈Θi , θ−i ∈Θ−i for which

x(θi ,θ−i) = x(θ′i ,θ−i) (2.5)

but pi (θi ,θ−i) 6= pi (θ
′
i ,θ−i). Without loss of generality, let

pi (θi ,θ−i)< pi (θ
′
i ,θ−i). (2.6)

The proof is essentially the same for the case of pi (θi ,θ−i)> pi (θ
′
i ,θ−i). Then

ui (θ
′
i ,θ
′
i ,θ−i) = vi (θ

′
i , x(θ′i ,θi))− pi (θ

′
i ,θ−i)

= vi (θ
′
i , x(θi ,θi))− pi (θ

′
i ,θ−i), from (2.5),

< vi (θ
′
i , x(θi ,θi))− pi (θi ,θ−i), from (2.6),

= ui (θ
′
i ,θi ,θ−i),

32

2.3. VCG MECHANISMS

which contradicts truthfulness (see Definition 2.11).

For condition (ii), again to get to a contradiction, assume that there exists player i ,
type profile (θi ,θ−i) and type θ′i ∈Θi such that

vi (θi , x(θi ,θ−i))− px(θi ,θ−i)
(θ−i)< vi (θi , x(θ′i ,θ−i))− px(θ′i ,θ−i)

(θ−i).

Then (by our notational convention of condition (i)), trivially

vi (θi , x(θi ,θ−i))− pi (θi ,θ−i)< vi (θi , x(θ′i ,θ−i))− pi (θ
′
i ,θ−i)

and so,
ui (θi ,θi ,θ−i)< ui (θi ,θ

′
i ,θ−i),

contradicting truthfulness once again.

(⇐=) For the opposite direction, suppose that conditions (i) and (ii) do hold, and
we need to show thatM allocates truthfully. To arrive to a contradiction, assume that
there exist player i with type θi and types θ′i ∈Θi , θ

′
−i ∈Θ−i such that

ui (θi ,θi ,θ
′
−i)< ui (θi ,θ

′
i ,θ
′
−i).

Under condition (i) this gives

vi (θi , x(θi ,θ
′
−i))− px(θi ,θ

′
−i)
(θ′−i)< vi (θi , x(θ′i ,θ

′
−i))− px(θ′i ,θ

′
−i)
(θ′−i),

which contradicts condition (ii). o

2.3 VCG Mechanisms

In this section we will try to use the fundamental idea behind the Vickrey auction and
the mechanism design “techniques” suggested by Proposition 2.13 in order to construct
truthful mechanisms for general direct revelation environments (not only simple, one item
sealed-bid auctions). Furthermore, the auctions we are going to introduce will also sat-
isfy one other, very important property of the Vickrey auction: the maximization of the
“combined happiness” of our players. Let’s start by making this formal, by considering as
a measure for that “combined happiness” the sum of the players’ individual “satisfactions”,
i.e. valuations.

33

CHAPTER 2. MECHANISM DESIGN

DEFINITION 2.14 (Efficiency) Fix some direct revelation environment
Ed =

�

N ,{Θi}i∈N ,O ,{vi}i∈N
�

. Assuming some type profile θ = (θ1,θ2, . . . ,θN) ∈ Θ
fixed, the efficiency (or social welfare) of an outcome o ∈ O is the value

∑N
i=1 vi (θi , o). More

succinctly, efficiency is the function E :Θ×O −→R with

E(θ, o) =
N
∑

i=1

vi (θi , o).

If, in addition, a specific (direct revelation) mechanismM =
�

x,{pi}i∈N
�

over Ed is given
then the notion of efficiency can be naturally restricted to the decisions made by M ,
defining the efficiency of mechanismM to be the function EM : Θ −→ R with EM (θ) =
∑N

i=1 vi (θi , x(θ)). Since this expression depends only on the decision rule x of the mecha-
nism (and not on the payments) we sometimes write Ex instead of EM .

Obviously13, we would like to design mechanisms that maximize efficiency. Maximiz-
ing efficiency is the predominant objective in Mechanism Design and mechanisms that
succeed in implementing social choice functions that achieve this maximization are usu-
ally called (socially) efficient. Alternatively, one could have considered maximizing the
happiness of the least happy player as an implementation objective, i.e. try to maximize
mini∈N vi (θi , x(θ)). To many (presumably those struggling for social equity...) this may
seem as a more appropriate14 measure of “social welfare”.

However “socially sensitive” we may be, we cannot ignore the fact that the motivation
behind our thesis lies in the general field of electronic commerce, thus we must also take
into consideration the “happiness” of the mechanism designer. In an auction setting, for
example, we cannot expect the auctioneer to be someone spends time and resources to de-
sign a socially efficient auction without caring about his revenues15. So, sometimes we will
use the maximization of the sum of the payments collected by all players as an objective:

DEFINITION 2.15 (Revenue) LetM =
�

x,{pi}i∈N
�

be a direct revelation mechanism
(over some environment Ed =

�

N ,{Θi}i∈N ,O ,{vi}i∈N
�

). The (total) revenue ofM is the
function RM :Θ−→R with

RM (θ) =
N
∑

i=1

pi (θ).

13Being socially sensitive...
14In fact, this social objective is used in many computational problems of Algorithmic Game Theory, most

notably load balancing problems. E.g. see the seminal paper of Koutsoupias and Papadimitriou [1999], or
[Vöcking, 2007] for a nice overview of such problems.

15It would be very hopeful to know that such people, who give away commodities and also make sure that
this is done in a socially optimal way, do exist, however this certainly not the rule.

34

2.3. VCG MECHANISMS

Now its time to start doing what we promised in the beginning of our section 2.3:
designing truthful and socially efficient mechanism.

DEFINITION 2.16 (Groves mechanisms) A Groves mechanism is a direct revelation
mechanismM =

�

x,{pi}i∈N
�

(over some environment Ed =
�

N ,{Θi}i∈N ,O ,{vi}i∈N
�

)
for which:

(i) the decision rule x maximizes efficiency E, i.e.

x(θ) ∈ argmax
o∈O

N
∑

i=1

vi (θi , o)

(ii) the payment pi collected from every player i ∈N is of the form

pi (θ) = hi (θ−i)−
∑

j∈N
j 6=i

v j (θ j , x(θ))

where hi :Θ−i −→R is some function (independent of player’s i type θi),

for all possible type profiles θ= (θ1,θ2, . . . ,θN) ∈Θ.

Admittedly, the payment expression on the above Definition 2.16 seems to have been con-
ceived in a moment of infinite inspiration, however this choice is going to be sufficiently
justified when we study the special case of VCG mechanisms at Definition 2.20, on page 37.
The Vickrey auction will, as one expects, makes its appearance once more. A trivial obser-
vation to make here is that, although we are given great flexibility in the choice of hi (θ−i),
many choices can have significant effect in the payments collected by our mechanism and
may make it have many totally undesirable properties.

THEOREM 2.17 Every Groves mechanism is truthful.

PROOF We will prove our theorem using the characterization of Proposition 2.13. A
proof directly from Definition 2.11 would also be possible (and actually more natural
and common), however our aim here is to demonstrate the “higher level” interaction of
the conditions in Proposition 2.13.

Let M =
�

x,{pi}i∈N
�

be our Groves mechanism. From property (ii) of Defini-
tion 2.16 it is not difficult to see that the players’ payments do not directly depend on
their types and in particular (using the notation of Proposition 2.13(i))

po(θ−i) = hi (θ−i)−
∑

j∈N
j 6=i

v j (θ j , o), (2.7)

35

CHAPTER 2. MECHANISM DESIGN

for all type profiles θ= (θi ,θ−i) and outcomes o = x(θi ,θ−i), thus satisfying condition
(i) of Proposition 2.13.

Next, fix some player i with type θi and types θ−i . Then, for every possible out-
come o ∈ x(Θi ,θ−i),

vi (θi , o)− po(θ−i) = vi (θi , o)−

hi (θ−i)−
∑

j∈N
j 6=i

v j (θ j , o)

, from (2.7),

= vi (θi , o)+

∑

j∈N
j 6=i

v j (θ j , o)

− hi (θ−i)

=
N
∑

i=1

v j (θ j , o)− hi (θ−i),

and due to the fact that hi (θ−i) is independent of o,

argmax
o∈x(Θi ,θ−i)

�

vi (θi , o)− po(θ−i)
�

= argmax
o∈x(Θi ,θ−i)

N
∑

i=1

v j (θ j , o). (2.8)

Now notice that x(Θi ,θ−i) ⊆ O and x(θ) = x(θi ,θ−i) ∈ x(Θi ,θ−i), so condition (i) of
Definition 2.16 gives x(θi ,θ−i) ∈ argmaxo∈x(Θi ,θ−i)

∑N
i=1 vi (θi , o) thus, from (2.8),

x(θi ,θ−i) ∈ argmax
o∈x(Θi ,θ−i)

�

vi (θi , o)− po(θ−i)
�

,

satisfying condition (ii) of Proposition 2.13, establishing truthfulness forM . o

Next we are going to present two, superficially trivial, properties that we have “silently”
expected our mechanisms to satisfy, primarily based on intuitions regarding specific exam-
ples of applications, notably auctions. However, up until now we have not stated them
and, therefore, neither tested them.

DEFINITION 2.18 (IR) A direct revelation mechanism M =
�

x,{pi}i∈N
�

(over some
environment Ed =

�

N ,{Θi}i∈N ,O ,{vi}i∈N
�

) is called individually rational (IR) if, on
the induced game Γ(M), all players receive nonnegative utility by playing truthfully (i.e.
si (θi) = θi). More succinctly, for every player i ∈N ,

vi (θi , x(θ))− pi (θ)≥ 0

36

2.3. VCG MECHANISMS

for all type profiles θ= (θ1,θ2, . . . ,θN) ∈Θ.

The left hand side of the inequality is essentially player’s i utility. Simply put, we wouldn’t
like our mechanisms to punish players that just choose to “honestly” participate in it.
Seeing it from another angle, no rational player would choose to be part of a mechanism
that has the ability to force a loss to her.

DEFINITION 2.19 (No positive transfers) We say that a direct revelation mechanism
M =

�

x,{pi}i∈N
�

(over some environment Ed =
�

N ,{Θi}i∈N ,O ,{vi}i∈N
�

) makes no
positive transfers if it never “pays” an agent (instead of receiving payment). Formally, for
every player i ∈N ,

pi (θ)≥ 0

for all type profiles θ ∈Θ.

Note that no positive transfers is trivially a sufficient condition (though certainly not a
necessary one) for assuring no loss to the mechanism designer (i.e. positive revenue).

In general, Groves mechanisms (see Definition 2.16) may not be IR, neither make no
positive transfers. For the right choice of hi (θ−i), however, we can guarantee these desir-
able properties are satisfied.

DEFINITION 2.20 (VCG mechanisms) A VCG mechanism is a Groves mechanismM =
�

x,{pi}i∈N
�

for which
hi (θ−i) =max

o∈O

∑

j∈N
j 6=i

v j (θ j , o).

That means that a VCG mechanism is a direct revelation mechanism that maximizes effi-
ciency and its payment rule is

pi (θ) =

max
o∈O

∑

j 6=i

v j (θ j , o)

−
∑

j 6=i

v j (θ j , x(θ)).

Note that every VCG mechanism is completely determined by its environment E =
�

N ,{Θi}i∈N ,O ,{vi}i∈N
�

. Therefore we can speak of the VCG mechanism (given a fixed
direct revelation environment). The intuition behind the rather involved expression of
the payment rule is that each player must submit a payment equal to the damage that her
presence causes to the other players. In Economic Theory terms, we use such a payment
to force each player internalize the externalities she causes. The first term in the expres-
sion equals the maximum combined satisfaction (efficiency) all other players could have

37

CHAPTER 2. MECHANISM DESIGN

achieved if i was not present, while the second term represent the efficiency they end up
having due to player’s i participation. It is trivial to check that in a single item sealed-bid
auction setting, the VCG mechanism is our beloved Vickrey auction.

PROPOSITION 2.21 Every VCG mechanism is truthful and makes no positive transfers.
Furthermore, if we are in an environment for which vi (θi , o) ≥ 0 for every player i , all
types θi ∈Θi and all possible outcomes o ∈ O , then the VCG mechanism is also IR.

PROOF Every VCG mechanism is a Groves mechanism and thus it is truthful (Theo-
rem 2.17). No positive transfers and IR remain to be shown. LetM =

�

x,{pi}i∈N
�

be
our VCG mechanism. Fix some player i and type profile θ= (θi ,θ−i). Since x(θ) ∈ O ,
maxo∈O

∑

j 6=i v j (θ j , o)≥
∑

j 6=i v j (θ j , x(θ)) and so (from Definition 2.20)

pi (θ) =

max
o∈O

∑

j 6=i

v j (θ j , o)

−
∑

j 6=i

v j (θ j , x(θ))≥ 0,

which means thatM makes no positive transfers (Definition 2.19).
Next, notice that, again because M is a Groves mechanism, from property (i) of

Definition 2.16 we get that
v j (θ j , x(θ))≥ v j (θ j , o)

for every player j ∈ N and every possible outcome o ∈ O . But we have assumed that
vi (θi , o)≥ 0 for all o ∈ O , so

N
∑

j=1

v j (θ j , x(θ))≥
N
∑

j=1

v j (θ j , o)≥
∑

j 6=i

v j (θ j , o)

for every o ∈ O , thus

N
∑

j=1

v j (θ j , x(θ))≥max
o∈O

∑

j 6=i

v j (θ j , o). (2.9)

Then,

vi (θi , x(θ))− pi (θ) = vi (θi , x(θ))+
∑

j 6=i

v j (θ j , x(θ))−max
o∈O

∑

j 6=i

v j (θ j , o)

=
N
∑

j=1

v j (θ j , x(θ))−max
o∈O

∑

j 6=i

v j (θ j , o)

≥ 0, from (2.9),

38

2.4. NOTES

establishing individual rationality (Definition 2.18). o

Before closing this section, we would like to mention that, generally, every truthful
mechanism is essentially simply a variation of the VCG of mechanism. This mechanisms
are affine maximizers (see [Nisan, 2007, p. 228]) called weighted VCG mechanisms and,
informally, result from the payment rule of the standard VCG mechanism by adding ap-
propriate weights to the various components. For more details, we refer to the references
proposed in the Notes section 2.4 of this chapter.

2.4 Notes

Once again, as in Chapter 1, we refer to the textbooks of Fudenberg and Tirole [1991,
chapters 6,7] and Mas-Colell et al. [1995, chapter 23] for a complete introduction in the
field of classic Mechanism Design and incomplete information (Bayesian) games. In ad-
dition to them we suggest textbooks in Auction Theory, e.g. [Krishna, 2002]. Having
as a motivation the most notable applications of Mechanism Design, i.e. auctions, they
make extensive use of tools and notions from that field. The brilliant Vickrey auction is of
course due to Vickrey [1961], while general Groves mechanisms are due to Groves [1973].
For the inspired choice of hi ’s in Definition 2.20 responsible is Clarke [1971] who had
proposed his pivotal rule a couple of years earlier. The initials in “VCG” are a tribute to
all previous three, the texts of whom essentially founded the field of Mechanism Design.
Modern Social Choice Theory starts with the seminal work of Arrow [1951].

Our exposition in the current Chapter 2 is influenced in some extent by the well-
written overview of Nisan [2007]. That text is highly recommended, as it is somehow
biased towards a Computer Science audience, without neglecting the roots in Microeco-
nomic Theory, neither compromising in rigor. Moreover, the term Algorithmic Mecha-
nism Design was coined in Nisan and Ronen [1999]. This seminal paper marked beginning
of using tools from classic Mechanism Design to study many important computational
problems.

39

CHAPTER 2. MECHANISM DESIGN

40

Chapter 3

Competitive Analysis

3.1 Online Optimization Problems

Most of the times in Computer Science, we have to deal with some kind of optimization
problems. In such problems their is an objective function which we try to optimize
(maximize or minimize). Let us formalize our discussion, in order to be able to introduce
our desired notions with a degree of necessary rigor and clarity.

Let P be an optimization problem. Problem P has a set of possible inputs (instances)
X and, for a given input x ∈ X a set of feasible solutions F (x). More importantly we
have an objective function σ :

⋃

x∈X ({x}×F (x)) → R≥0. Without loss of generality,
let us suppose that our goal is to maximize this objective function (the discussion can be
readily adopted to the case of minimization problems). For every input x ∈ X we try to
find a feasible solution y that maximizes the value of σ(x, y), i.e. y ∈ argmaxy∈F (x)σ(x, y).
Applying all these in an algorithmic setting, let A be an algorithm for our maximization
problem P . In every input x ∈X , algorithm A computes a feasible solution A(x) ∈F (x)
resulting to a values of σ(x,A(x)) of the objective function. Summarizing, our goal is
to find an algorithm A for problem P which maximizes σ(x,A(x)) for all possible inputs
x ∈ X . Obviously, an optimal algorithm for our maximization P , denoted by OPTP ,
would be one satisfying

OPTP ∈ argmax
A

σ(x,A(x)) for all x ∈X .

The “performance” of an optimal algorithm for a given problem can be used as a
“benchmark” to measure the performance of other algorithms for the same problem. We
say that an algorithm A for a maximization problem P is a c -approximation algorithm if it
performs within a factor of c with respect to the optimal algorithm for the same problem,

41

CHAPTER 3. COMPETITIVE ANALYSIS

i.e.

σ(x,OPTP (x))≤ c ·σ(x,A(x)) for all x ∈X . (3.1)

Note that, c ≥ 1.

In “traditional” algorithmic design, when we try to solve an (optimization) problem
we generally assume that every input x is presented to our algorithm instantaneously and
in full. The efforts of the algorithm designer is how to efficiently (usually with respect
to running time) compute an optimal feasible solution (which maximizes the objective
function). If that is not possible, we may settle for some other efficient approximation
algorithm that performs within a good factor c with respect to the optimal (see (3.1)). This
is the very idea behind the very important field of Approximation Algorithms.

On the other hand, many computational problems naturally require to be modeled in
a totally different way. In a way that their input is revealed in an online (time-dynamic)
fashion. An algorithm for such a problem has to make a series of decisions, based only on
past events and prior, already received information about our input. No reliable informa-
tion about the future can be available to us. The input is constructed in a dynamic way.
Such problems are called online problems and many important problems fall within this
framework. Notable examples include the paging problem, many routing and load balanc-
ing problems and the k-server problem. Classic textbook example include the ski-rental
problem and the lost-cow problem (also known as the cow-path or bridge problem). We
will use the term offline to refer to “traditional” optimization problems.

3.2 Competitive Analysis

The important question that arises in online computation is how we can measure the per-
formance of various algorithms for some online optimization problem. Towards this di-
rection we adopt a worst-case framework. Let P be an online maximization problem with
an objective function σ and A be an online algorithm for P . These notion are extended
in the natural way in our online computational setting. We will compare the performance
of our algorithm A to that of an optimal offline algorithm OPTP which we assume that
has access to the whole input x, in an offline manner. Of course, the existence of such an
algorithm is practically unrealizable, since the input is revealed dynamically and cannot
be known in advance. However, we can use it as a theoretical a benchmark to serve our
worst-case analysis framework, since obviously it will generally perform (weakly better)
than every online algorithm due to the fact that it has access to the entire input and thus

42

3.2. COMPETITIVE ANALYSIS

can optimally plan its actions.
In the spirit of Approximation Algorithms and equation (3.1) we give the following

definition

DEFINITION 3.1 Let A be an online algorithm for some (online) maximization problem
P with objective function σ . We will say that A is c-competitive1 if

σ(x,OPTP (x))

σ(x,A(x))
≤ c for all x ∈X . (3.2)

Note that, if we assure that σ(x,A(x)) 6= 0 for all x ∈ X , the condition of the above
Definition 3.1 is equivalent to equation (3.1). But it is natural to assume that σ(x,A(x)) 6= 0
holds for every x since, in the opposite case (3.1) would have resulted in σ(x,OPTP (x))≤ 0
for some input x which essentially contradicts the optimality of OPTP (remember that
σ ≥ 0).

It easy to see that if an online algorithm is c -competitive then it is also (c+ε)-competitive
for every ε > 0. We are, therefore, interested in the “critical” minimum value of c for which
condition (3.2) still holds. This is very important, because it essentially determines the per-
formance of A. So, what we are looking for is actually the least upper bound2 of the set
n

σ(x,OPTP (x))
σ(x,A(x)) ≤ c | x ∈X

o

.

DEFINITION 3.2 Let A be an online algorithm for some (online) maximization problem
P with objective function σ . The competitive ratio of A is

CRP (A) = sup
x∈X

σ(x,OPTP (x))

σ(x,A(x))
. (3.3)

In many cases this supremum can be replaced by a maximum, for example if the input space
X is finite. Also, in the case that for a given optimization problem P we have more than
one objective functions, we will enrich our notation to CRσP (A) in order to make clear
with respect to which objective function our competitive ratio is computed.The smaller
the competitive ratio of an algorithm, the better its performance. Expression (3.3) can
help us develop a very useful interpretation of the notion of competitive ratio. We can
think of competing against a malicious, almighty adversary which always chooses the

1Sometimes this term is used to describe a more relaxed condition than that of our definition, namely
σ(x,OPTP (x))≤ c ·σ(x,A(x))+α for some constant α > 0, allowing some flexibility with respect to initial-
ization costs that many problems unavoidably have. In such a case, the term strictly c -competitive is used to
describe the condition of our Definition 3.1. However, in this thesis we will only need the strict case of our
initial definition.

2For a definition, consult any serious book in calculus or analysis, e.g. [Rudin, 1976, Definition 1.8].

43

CHAPTER 3. COMPETITIVE ANALYSIS

worst input x for us, in order to achieve the supremum of expression (3.3), maximizing our
competitive ratio. This could be some kind of “evil” God that has complete information of
our environment and the algorithm A which we have selected to run and always constructs
the worst input for us, revealing it to us in the most disastrous online way possible.

We pick the best among all possible algorithms for a given online problem to represent
the competitive ratio of that problem.

DEFINITION 3.3 (Competitive ratio) Let P an online maximization problem with an
objective function σ . Problem’s P competitive ratio is

CRP = inf
A

sup
x

σ(x,OPTP (x))

σ(x,A(x))
.

The adversarial interpretation is once again very useful: we first choose an online algo-
rithm A in our effort to minimize the competitive ratio for our problem. Next, the ad-
versary, knowing our decision A, chooses the worst input x in order to maximize our
competitive ratio.

Throughout the years many techniques have been deployed to prove lower and upper
bounds of the competitive ratios for specific problems. Some of them were inherited from
other fields of Computer Science (especially from Approximation Algorithms) and others
were developed with competitive analysis in mind (such Yao’s lemma and the potential
function method). Although we are not going to analyse further any of these techniques
(we refer to the Notes section 3.3 for appropriate references) there is a simple observation
on 3.3 that underlies the whole quest for lower and upper bounds. At first, the competitive
ratio of a specific algorithm A is an upper bound on the competitive ratio of the general
problem P . And secondly, fixing a specific input x, the infimum of the competitive ratio
fraction (see, e.g. expression Definition 3.3) as we run through all possible algorithms A
is also a lower bound of the competitive ratio of the general problem P . Summarizing, in
order to prove upper bounds we need to find specific algorithms that perform well and in
order to prove lower bounds we need to find bad inputs that cause all algorithm to run
poorly. Obviously, when the upper and lower bounds coincide then we have managed to
compute the exact value of the competitive ratio for our problem.

We will refer to the worst-case analysis framework which we presented in this section
as competitive analysis. In Economic Theory (and other scientific disciplines) the usual
framework in which such problems are studied is that of average-case (Bayesian) analysis.
In such a framework, one makes some distributional assumption with respect to the input
x and then tries to compute the expected value of the objective function. In competitive

44

3.3. NOTES

analysis we make no assumptions at all. We want our performance factors to hold even
against an almighty, malicious adversary.

Despite all that, we may by able to weaken our adversary’s power, without leaving our
competitive analysis framework: by allowing randomization. By letting a coin to be tossed
at some point during the execution of our algorithm, the adversary will again know the
algorithm A we are using before he decides what’s the worst input x for us, but he is not in
position of securely knowing the realization of the random events. This may result in our
adversary’s choice x not maximizing σ(x,OPTP (x)).

The adversarial model we adopt in our framework of competitive analysis is sometimes
referred to as oblivious adversary. There are other stronger adversarial models, which for
example are not affected by randomization (adaptive offline adversaries) and weaker ones,
which for example force the adversary to make some of his decisions before ours (adaptive
online adversary). For more details we refer to the text suggestions of the Notes section 3.3
of our chapter.

3.3 Notes

Our exposition in this chapter closely resembles that of [Borodin and El-Yaniv, 1998],
which is also the standard reference textbook in the area. The collection of papers edited by
Fiat and Woeginger [1998] is also cited often. For a study of the power of randomization in
competitive analysis and the various adversarial models they occur we refer to [Ben-David
et al., 1994]. Finally, it is apparent from our exposition in section 3.1 that competitive
analysis has its roots in the field of Approximation Algorithm and therefore it has inherited
many notions, techniques and ideas from it. An excellent book on the subject is that of
Vazirani [2001].

45

CHAPTER 3. COMPETITIVE ANALYSIS

46

Part B

Online Mechanism Design

47

Chapter 4

Online Mechanism Design

In this chapter we will extend the framework of classic Mechanism Design introduced in
Chapter 2 so as to incorporate time-dynamic environments. Such settings not only are
more natural and general but also can model problems of online nature, i.e. situations at
which information about our environment and its specific variables is revealed to as in a
time-dependent way rather than statically and in full. This is of great importance to as since
the very goal of this thesis is to study such decision-making under uncertainty problems and
in particular dynamic auctions at which either the bidder set or is not fully known by the
auctioneer but are revealed in an online fashion.

Without doubt, here we are using motivation and techniques from the filed of Online
Algorithms and so the reader is advised to familiarize himself with the spirit and context
of Chapter 3. On the other hand, the fundamentals of Online Mechanism Design are not
presented in the formal way of Chapter 2. Although our exposition will be rigorous and
cautious, the notions will be introduced as a means to lay the ground for the powerful
results we are going to show at the following chapters rather than for the sake of formality.
In this way, this chapter is somehow self-contained as far as the fundamental notions of
Mechanism Design are concerned. However, the reader will surely benefit from building a
solid background in the spirit of Chapter 2.

We consider a dynamic environment consisting of discrete (possibly infinite) time pe-
riods T = {1< 2< 3< . . .} which we will usually index by t and a finite set of partic-
ipating agents N = {1,2, . . . ,N} which will be indexed by i . An (online) mechanism
in this environment enforces a sequence of decisions k = (k1, k2, . . .) ∈ O , decision k t

made at time period t , O being the set of all possible outcomes. We will use the notation
k[t1,t2] = (k t1 , k t1+1, . . . , k t2) to refer to the decisions made during a discrete time interval
[t1, t2] = {t ∈ T | t1 ≤ t ≤ t2 }, t1, t2 ∈ T . Agent’s i type is a tuple θi = (ai , di , wi) where
ai , di ∈ T , ai ≤ di and Θi will denote the set of all such possible types. We refer to ai and

49

CHAPTER 4. ONLINE MECHANISM DESIGN

di as the arrival and departure time, respectively, of agent i .
For every agent i we define a valuation function (or simply valuation) vi :Θi×O −→

R where agent’s i value1 vi (θi , k) depends only on decisions made within her arrival-
departure time interval [ai , di], that is

vi (θi , k) = vi (θi , k[ai ,di]).

We use the valuation component wi of agent’s i type in order to parametrize2 in a rigorous
and flexible way her valuation function. Although this is not made explicitly clear through
our notation, we don’t demand agent’s i valuation component to be constant through
time but we allow, for instance, situations in which an agent could gradually discount her
valuation component by a factor γ t−ai at future periods t > ai , where γ ∈ (0,1). In this
way she can parametrize an equivalent time-dependent discount in her values3. So we can
consider agent’s i valuation component wi to be a sequence wi = (w

1
i , w2

i , . . .), w t
i being

the valuation component at time period t . However, at this point we decide to keep the
notation light and we will simply write wi .

Our (online) mechanism also defines a payment rule p = (p1, p2, . . . , pN) ∈ RN where
pi is the payment “collected” from agent i . We could assume that pi ≥ 0 for every agent
i , which is called no-deficit principle4, due to the fact that it is a sufficient condition to
guarantee no deficits for our mechanisms. A negative payment pi < 0 models situations
in which the mechanism makes a direct payment to agent i (instead of actually receiving
one)5 and this could lead to an overall deficit for the mechanism. If we want to exclude such

1The terms “valuation” (function) and “value” are traditionally used interchangeably. However, if we
want to be accurate, we will use the term “valuation” to refer to the function and “value” to refer to a value
of this function at some input (θi , k).

2Parameter wi need not to be always a real number, implementing, for example, an ordering upon agent’s
preferences. Many times we will need to express more complex parametrizations. Consider, for instance, an
online auction in which we want to be able to express preferences such as “Agent i wants item A or item B
but not both”.

3Think, for example, of the price a consumer is willing to pay in order to buy a new laptop computer.
When the new model comes out it incorporates many new, “hot” technological features and so (with a little
help from advertisements) is highly valued from potential buyers. As time goes by, new models and features
appear at the market and gradually prices drop due to the fact that consumers are willing to pay less for older
technology. After a year or so, this computer is already considered as a “previous generation” model and
possibly many consumers have reached the end point di of their interest to the product. Although we don’t
want, in any way, to argue that prices in markets are formed through well defined algorithmic mechanisms
(like the ones we study in this project), this is still a nice example to understand the time dependency of an
agent’s value.

4This is exactly the same as the no positive transfers notion Definition 2.19, page 37, but here we preferred
to use the no-deficit term as this is the one more usually found in online mechanism design literature.

5Many times this is exactly what we want. Consider, for example, an auction at which the auctioneer
is the government and auctions the construction of a new airport. In this auction setting the agents are
construction companies which report the amount of money they want in order to undertake the project,

50

behavior, it is sufficient to adopt the no-deficit principle. However, what we are actually
going to need later on is a weaker condition (Definition 5.12, page 69).

Then, we define agent’s i utility (for our mechanism deciding k and collecting payment
p) to be the difference

ui = vi (θi , k)− pi (4.1)

If we think of agent’s i value vi (θi , k) as showing how much she “values” decision k (which
is a very natural and useful interpretation) then her utility ui shows what she “gains” from
participating in our online mechanism setting deciding k. It represents the balance between
how much she benefits from the mechanism (vi (θi , k)) and how much she has to give back
to it (payment pi).

Based on this interpretation, it is intuition-compatible but also technically useful to
assume that our agents are risk neutral, that is

ui ≥ 0⇐⇒ vi (θi , k)≥ pi (4.2)

for every agent i , type θi and decisions k and payment rule p made by our mechanism.
This demands nonnegative utility for all agents. We do not want to study mechanisms
that can force a deficit to an agent, so we restrict our attention to environments in which
agents decide to participate “strategically”, only because they have the chance of gaining
something from participating, but nothing to lose. That is why this property is known
as voluntary participation. The approach here is compatible with one of the cornerstones
of Game Theory in general: the primary assumption that players act rationally. So, from
now on we will refer to the above fundamental property (4.2) as individual rationality6

(IR).

We could have introduced our notions of dynamic environments and mechanisms in
such environments in a more formal way, like we did for classic Mechanism Design in
Chapter 2, e.g. defining a dynamic environment to be a tuple ET =

�

N ,{Θi}i∈N ,O ,{vi}i∈N
�

,
etc.. However, as we mentioned at the beginning of this chapter, such a formal exposition
was carried out in Chapter 2 and can naturally be extended for our dynamic model, if
needed.

The term Online Mechanism Design was coined in the important paper of Friedman
and Parkes [2003] in a model resembling that presented here (although lacking departure
times). Earlier, Lavi and Nisan [2000] have used the term online auction, deploying a
totally different, economic theoretic model. Our exposition in this Part B of our thesis

and are actually going to get payed by the auctioneer.
6We have already seen this term in Definition 2.18, page 36.

51

CHAPTER 4. ONLINE MECHANISM DESIGN

draws elements from the two basic papers that cover the specific online auction examples
we are going to study in Part C. Namely these papers are [Hajiaghayi et al., 2005] and
[Hajiaghayi et al., 2004]. However, in spirit we are closer to Parkes [2007].

4.1 Direct-Revelation Mechanisms

The messages that agents send to the mechanism are exactly the reports for their types θi .
It is more accurate, though, to speak of claims rather than “reports”, because it is obvious
that an agent can (and will, actually) lie about her true type if this is to maximize her utility.
We call this behavior misreporting. These misreports are agents’ strategies (in the context
of Game Theory). We will consider only direct-revelation mechanisms, that is, online
mechanisms that restrict the message an agent can send to a single, direct claim about her
type7. This means that agent i directly makes a report bθi = (bai ,

bdi , bwi) about its type (that
can be differentfrom its true type θi = (ai , di , wi)) and this claim is made only once (at a
single time period t ∈ T) during the execution of the mechanism. Furthermore, we will
usually consider our mechanisms to be closed, which means that participating agents get no
feedback information about other agents’ types before they “enter” the mechanism, that
is, before they report their own types. This is crucial because no agent can condition her
strategy upon other agents’ reports.

We define a mechanism state h t for every time period t ∈ T which captures all infor-
mation relevant to the decision k t made by the mechanism in that period t . We denote the
set of all such possible states in period t with H t . We also define ω ∈ Ω to be the set of
all possible stochastic8 events that can occur in our dynamic environment, Ω denoting the
collection of all such possible sets. For example, ω may include the realization of uncer-
tainty about supply to the mechanism. We write Ω=

∏

t∈T Ω
t and we letω t ∈Ωt denote

the information about ω that is revealed to the mechanism at time period t . In a similar
way we let θt denote the set of agent types reported at period t .

Given this, and the description of the setting of our mechanisms we have made so far,
it is convenient to define

h t = (θ1, . . . ,θt ;ω1, . . . ,ω t ; k1, . . . , k t−1)

7We have already introduced direct-revelation mechanisms, in a more formal way, at section 2.2 during
our exposition of the fundamentals of classic Mechanism Design. See Definition 2.9 and Definition 2.10,
page 28.

8We must make clear here that this does not include the types of the agents nor any randomization within
the mechanism itself.

52

4.1. DIRECT-REVELATION MECHANISMS

letting state h t capturing information about all reported types and stochastic events up to
the current time period t and decisions made by the mechanism so far (notice that decision
k t has not been made yet and that is why the superscripts at the decisions list runs up to
t−1). In practice and in the mechanism-specific examples that follow only a portion of this
information will be used. The state space H =

⋃

t∈T H t may be finite, countably infinite
or uncountable. This depends, in part, on whether agent types are discrete or continuous
and to be more specific, on the cardinal numbers of the setsWi of the possible valuations
of the agents. Let K(h t) denote the set of all feasible decisions of the mechanism in the
current time period t . We assume K(h t) to be finite for all h t ∈ H t . Finally, we let I (h t)
denote the set of all active agents in state h t . By “active” we mean an agent i for whom
t ∈ [ai , di], i.e. current time period belongs to her reported arrival-departure interval.

The following definition describes direct-revelation online mechanisms in the spirit of
Mechanism Design and establishes the relevant notation we are going to use:

DEFINITION 4.1 (Direct-revelation online mechanism) A direct-revelation online mech-
anism M T = (x,{pi}i∈N) restricts each agent to making a single claim about its type

and defines decision policy x = {x t}t∈T and payment policy p =
¦

(p t
1 , p t

2 , . . . , p t
N)
©t∈T

,
where decision x t (h t) ∈ K(h t) is made in state h t and payment p t

i (h
t) ∈ R≥0 is collected

from each agent i ∈ I (h t).

This definition includes a couple of subtle properties of our mechanisms which worth fur-
ther clarification. Decision policy x may very well be stochastic (again, this is different
from the algorithmic randomization within the mechanism itself), depending on the real-
ization of uncertain events ω ∈ Ω. Also, the payment policy π has the freedom to collect
payments from the same agent across different time periods. To keep the notation conve-
nient and coherent, we let x(θ,ω) = (x1(h1), x2(h2), . . .) denote the sequence of decisions
and pi (θ,ω) =

∑

t∈T p t
i (h

t) denote the total payment collected from agent i , given type
profile θ= (θ1,θ2, . . . ,θN) and the stochastic parameterω ∈Ω. In this way we can look at
agent’s i utility ui at expression (4.1) as a function

ui (θi ,
bθ,ω) = vi (θi , x(bθ,ω))− pi (bθ,ω), (4.3)

where θi is agent’s i true type and bθ is the reported type profile (from the agents to the
mechanism). Sometimes we can light the notation further if decision policy x is given and
just write

ui (θi ,
bθ,ω) = vi (θi ,

bθ,ω)− pi (bθ,ω).

53

CHAPTER 4. ONLINE MECHANISM DESIGN

Finally, note that the notions of efficiency and revenue introduced for offline mecha-
nism in Chapter 2 (see Definition 2.14 and Definition 2.15, page 33) can be readily trans-
ferred to our online setting and in fact they will serve as objective functions in the opti-
mization online problems we are going to study in the remaining of this thesis.

4.2 Limited Misreports

As we mentioned earlier (section 4.1, page 52) agents can lie about their true types and the
strategy space of every agent i consists exactly of all these possible. Based on this we give
the next definition:

DEFINITION 4.2 (Limited misreports) The set of available misreports to an agent i is a
subset C (θi)⊆Θi , where θi is her true type.

We interpret this set of available misreports C (θi) as the possible claims an agent i can
make about her true type θi . Of course θi ∈ C (θi), i.e. an agent can claim his true type
θi , although this is not a “mis-report” if we use the exact meaning of the word in english9.
In the standard treatments of offline Mechanism Design it is typical to assume C (θi) = Θi ,
which means that we apply no restrictions over the reports of agents. Every agent can
declare any possible type bθi ∈Θi as being her true one.

On the contrary, in our online setting, most of the times we are going to assume no
early-arrival misreports, which means that we limit the strategy space so that no agent can
report an earlier arrival bai than her true one ai , demanding ai ≤ bai . It is a very natural
assumption to make because we can think of the real arrival time ai as the very first mo-
ment that agent i is able to participate at the mechanism – like she has no knowledge of
her type (or even of the mechanism!) before that point in time. We make no restrictions
to the valuation claim bwi . So, the no early-arrivals assumption implies

C (θi) =
n

bθi = (bai ,
bdi , bwi)

�

�

� ai ≤ bai ≤ bdi ∧ bwi ∈Wi

o

,

where θi = (ai , di , wi) is the true type of agent i . In addition to no early-arrivals, we will
sometimes also assume no late-departures misreports, i.e. bdi ≤ di , which means that no
agent can delay (or, to be more precise, report to delay) his departure from the mechanism

9From now on we will use the word “misreport” in the context of Definition 4.2, diverging slightly from
the use of the word in english.

54

4.3. TRUTHFULNESS

further than his true departure time. This property, together with no early-arrivals, gives

C (θi) =
n

bθi = (bai ,
bdi , bwi)

�

�

� ai ≤ bai ≤ bdi ≤ di ∧ bwi ∈Wi

o

,

or, more compactly,
[bai ,

bdi]⊆ [ai , di].

Although, as we are going to see later, the no late-departures property is “necessary” in
some specific environments in order to assure desirable properties of our mechanisms (see,
e.g. Theorem 6.8, page 79), it is, in a way, a less natural

assumption than the no early-arrivals to make. It is obvious that an agent cannot par-
ticipate in a mechanism before she even knows about it (no early-arrivals) but she might
gain something from declaring that she is willing to stay active for longer than she really
is. And that, because she might not eventually “reach” her reported departure time bdi but
receive the maximized utility (as the result of lying) at a time period t ≤ di ≤ bdi previous
to her actual departure time di , so her lie does not get “exposed”. From now on, we will
explicitly mention the use of the no-late departures assumption whenever we employ it
and we are going to comment on relaxing it, whenever this is feasible.

4.3 Truthfulness

For the following, in our usual notation, C (θ−i) =
∏

j 6=i C (θ j) where C (θ) =
∏

i C (θi)

is the set of all possible type profile misreports bθ= (bθ1,
bθ2, . . . ,

bθN), given true type profile
θ= (θ1,θ2, . . . ,θN).

DEFINITION 4.3 (DSIC, truthful) An online mechanismM T = (x,{pi}i∈N) is called
dominant-strategy incentive-compatible (DSIC) or just truthful10, given limited misreports
C (θ), if

ui (θi ,θi ,θ
′
−i ,ω)≥ ui (θi ,

bθi ,θ
′
−i ,ω), (4.4)

for every agent i with true type θi , all possible type profile misreports bθ ∈ C (θ), θ′−i ∈
C (θ−i) and stochastic parameter ω ∈Ω.

The expression (4.4) in Definition 4.3 is trivially equivalent to

vi (θi , x(θi ,θ
′
−i ,ω))− pi (θi ,θ

′
−i ,ω)≥ vi (θi , x(bθi ,θ

′
−i ,ω))− pi (bθi ,θ

′
−i ,ω)

10The term srtategyproof is also widely used.

55

CHAPTER 4. ONLINE MECHANISM DESIGN

if we use equation (4.3). Here, we write ui (θi ,θi ,θ
′
−i ,ω), x(θi ,θ

′
−i ,ω) and pi (θi ,θ

′
−i ,ω)

instead of the more accurate ui (θi , (θi ,θ
′
−i),ω), x((θi ,θ

′
−i),ω) and pi ((θi ,θ

′
−i),ω), for the

sake of readability.

It is clear that equation (4.4) is a dominant strategy condition implying that, for every
agent i , the report of her true type θi is a (weakly) dominant strategy. No matter what
other agents’ claims θ′i are, she is better of telling the truth θi than every possible (other)

misreport bθi . Every agent maximizes her utility by being truthful and thus has no incentive
to lie.

If our mechanism is randomized, i.e. it’s decision policy x is stochastic, then for truth-
fulness (DSIC) we need equation (4.4) to hold for the expected utilities of the agents, for
every θ′−i ∈C (θ−i) andω ∈Ω:

Ex

�

ui (θi ,θi ,θ
′
−i ,ω)

�

≥Ex

h

ui (θi ,
bθi ,θ

′
−i ,ω)

i

,

where the expectation is taken with respect to the randomization of the policy x. Every
agent maximizes her expected utility by telling the truth, regardless of the reports of the
other agents and the external stochastic events ω. But for randomized mechanisms we
can define a much stronger notion of truthfulness than DSIC. Instead of maximizing the
expected utility we can require truthful reporting being a dominant strategy for every event
of the randomized policy, maximizing utility for all “random coin flips”. We will call this
property strong-truthfulness and the randomized mechanisms that satisfy it, strongly
truthful.

It goes without question that truthfulness is such an important and desired property
in Mechanism Design that we virtually ignore every mechanism that fails to satisfy it.
However, it would be nice to know that such an intuitive restriction to the study of only
a special family of mechanisms is without loss of generality. More specifically, we would
ideally like the Revelation Principle (Theorem 2.12, page 30) of classic (offline) Mechanism
Design to be extended in our online setting. In fact, the Revelation Principle is so deeply
rooted in the beliefs of researchers studying the field of Algorithmic Mechanism Design
that we many times take for granted that an online Revelation Principle11 must hold.

It turns out that this is not (always) the case, since we can can give examples of online
mechanism design environments in which some non-direct revelation mechanisms cannot
be “simulated” by truthful ones. In particular, if in some environment turns out that some

11We will not formally state the online Revelation Principle, since this would essentially be a rewriting of
Theorem 2.12 of the classic Revelation Principle. We have it in our mind as the adaptation (in the way one
would expect) of the idea of this classic result, to our online setting.

56

4.3. TRUTHFULNESS

agent might not to be able to sent a message (recall the notion of incomplete information
games) in some time period during which she was supposed (base to her report) to be ac-
tive, then we can exploit this weakness and give a counter example to the online Revelation
Principle. Such an example can be found in [Parkes, 2007, p. 416] and is a simple adapta-
tion of an example given originally by Pai and Vohra [2006, part B] in a slightly different
model of online mechanism design. However, if we demand no-late departures in addition
to our standard, arguably natural, assumption of no-early arrivals then online Revelation
Principle do hold. Alternatively, we could demand each player to send to the mechanism
an empty, “heartbeat” message at every time point. We omit the formal proof of this on-
line Revelation Principle, since it closely follows that of the classic one, using some simple
observations about “legal” message reporting (remember that we have general, non-direct
revelation mechanisms) which can be found in a proof originally again given in [Pai and
Vohra, 2006, part B].

57

CHAPTER 4. ONLINE MECHANISM DESIGN

58

Chapter 5

Single-Valued Online Domains

In this chapter we restrict our attention to a very specific (yet very inclusive) family of
mechanism design environments within our general dynamic setting, namely single-valued
online domains. In such settings the agents’ preferences are expressed through a very simple
and clear valuation expression which is of a “yes-or-no” nature. This is particularly useful
when trying to model auctions, due to the fact in most such environments an agent is
either fully satisfied, if he has received the wanted item(s), or totally unsatisfied otherwise.
Of course this is not always the case, e.g. think of an auction setting where agents have
different values for various item bundles. However, such combinatorial auctions are not
the subject of this thesis and therefor we will not deal with them.

Apart from being able to model all auction problems in which we are interested in this
project, single-valued domains are of utmost importance to us for one more reason: we can
give a complete characterization of truthful mechanisms within them. This is, obviously,
something we care very much about, and it is not only restricted to the case of online
Mechanism Design. Single-valued domains, along with their very good properties, can
be also defined in a classic (offline) Mechanism Design setting. However, we waited until
current Chapter 5 to make our exposition rather than in Chapter 2. This is because all
the results we are going to obtain in our online setting are essentially a generalization of
those in the classic case and thus, one can easily adapt them to case of offline Mechanism
Design1, if needed.

Again, in this chapter we have the papers of Hajiaghayi et al. [2005] and Hajiaghayi
et al. [2004], however we use elements from the more recent exposition in Parkes and
Duong [2007].

1For such an exposition of the results of this chapter in the spirit of classic Mechanism Design of Chap-
ter 2, the reader is referred to [Nisan, 2007, section 9.5.4]

59

CHAPTER 5. SINGLE-VALUED ONLINE DOMAINS

5.1 Basic Definitions

We know (see page 53) that K(h t) is the set of all feasible decisions at current time period
t , given that the current state of the mechanism is h t . So, by K t =

⋃

h t∈H t K(h t) we can
denote the set of all possible decisions the mechanism may make in time period t . Then
K =

⋃

t∈T K t is the set of all possible single-period decision our mechanism can make
during its execution. An equivalent way of definition would have been K =

⋃

h∈H K(h).
For every agent i we define a finite classLi =

¦

Li1, Li2, . . . , Li mi

©

⊆P (K) of sets Li j ⊆ K
of single-period decisions. Any such set Li j is called interesting set of agent i and its
elements interesting decisions.

An agent has single-valued preferences if she has the same value ri , which we will usually
call reward, whenever any interesting decision (out of some interesting set) is made in
some period t ∈ [ai , di], and has value for at most one such interesting decision. We can
incorporate all this information using the valuation component and defining wi = (ri , Li j),
with wi ∈Wi = R×Li . Finally, we assume that every agent i has a partial ordering �Li

onLi , i.e. upon her interesting sets Li j . In this way we can make agent i report only one
interesting set Li (thus making lighter the notation from Li j to Li), from now on called the
interesting set of agent i , and consider agent i as being satisfied (i.e. receiving reward ri)
whenever an interesting decision in Li or in some interesting set Li j of “grater importance”
(Li �Li

Li j) is made, while she is active2. More formally, whenever a decision

k t ∈Li (Li) =
⋃

Li�Li
L

L∈Li

L,

for some t ∈ [ai , di]. Now we are ready to give the formal definition:

DEFINITION 5.1 (Single-valued online domains) A single-valued (preference) online do-
main is an online direct-revelation mechanism environment in which each agent i has (true)
type θi = (ai , di , (ri , Li)), with reward ri ∈ R and interesting set Li ∈Li , and the valua-

2Think of Li as being a �Li
-minimal interesting set. Notice, however, that �Li

is only a partial ordering,
thus Li need not to be the minimal interesting set. Actually, is up to agent i which interesting set Li ∈Li she
is going to report. Perhaps a more coherent way of presenting interesting sets would have been to consider
Li as being a language for defining interesting sets for agent i and then define an element Li ∈ Li as being
the interesting set.

60

5.2. MONOTONICITY

tion is defined by:

vi (θi , k) =

ri , if k t ∈Li (Li) for some t ∈ [ai , di],

0, otherwise.

For the time being we will assume that for every agent i the family of sets of inter-
esting decisions Li , its partial ordering �Li

and the true interesting set Li , are all known
to the mechanism3. In this way, the private information of an agent is restricted exactly
to her arrival and departure times and her value for an interesting decision. This known
interesting-set assumption saves us from having to include in our arguments misreports
about the interesting set Li . At this point, this makes our analysis more solid and clear.
This assumption can be relaxed but we will be forced to introduce other conditions about
the nature of our interesting sets, in order to assure that our results continue to hold. More
details can be found in Parkes [2007, p. 429] and in Parkes and Duong [2007].

5.2 Monotonicity

Because in our single-valued domain environments we are primarily interested in whether
or not an agent is satisfied and then in when or how she gets satisfied, we can think, for
simplicity, of the decision policy x as being a binary function with respect to every agent
i and define, in the spirit of Definition 5.1,

xi (θi ,θ−i ,ω) =

1, if k t ∈Li (Li) for some t ∈ [ai , di],

0, otherwise,

that is, xi (θi ,θ−i ,ω) = 1 if an interesting decision is made for agent i (in some period
t ∈ [ai , di]) and xi (θi ,θ−i ,ω) = 0 if not (given type profile θ and external stochastic events
ω). Through this, we can express agent’s i valuation simply by

vi (θi , k) = vi (θi ,π(bθi ,
bθ−i ,ω)) = xi (bθi ,

bθ−i ,ω) · ri ,

3However, this does not imply that this information is public, i.e. known also to the other participating
agents.

61

CHAPTER 5. SINGLE-VALUED ONLINE DOMAINS

and so, the utility by

ui (θi ,
bθi ,
bθ−i ,ω) = xi (bθi ,

bθ−i ,ω) · ri − pi (bθi ,
bθ−i ,ω).

Also, the efficiency of an online mechanismM T with decision policy x in a single-valued
domain can be thus expressed as

EMT (bθ) = Ex(bθ) =
∑

i∈N
xi (bθi ,

bθ−i ,ω) · ri . (5.1)

Now we are ready to introduce a very important concept in online mechanism design
(and especially online auctions):

DEFINITION 5.2 (Critical value) Given an online mechanism with deterministic policy
x in a single-valued domain, for every agent i with reported type θi , types θ−i and external
stochastic events ω, we define her critical value

v c
(ai ,di ,Li)

(θ−i ,ω) =

inf
n

r ′i

�

�

� xi (θ
′
i ,θ−i ,ω) = 1 where θ′i = (ai , di , (r

′
i , Li))

o

, if this exists,

∞, otherwise.

In words, an agent’s critical value is the smallest reward she can report and still receive
an interesting decision, keeping everything else unchanged. However, this is not exactly
accurate, and depending on wether the the set {r ′i | xi (θ

′
i ,θ−i ,ω) = 1} in Definition 5.2

has a minimum or just an infimum. In the second case, reporting exactly the critical value
does not result in an interesting decision, but increasing this reported reward arbitrarily
little, an agent can receive an interesting decision. More precisely, immediately from how
we define the infimum4 of a set, we get

COROLLARY 5.3 Given an online mechanism on a single-valued online domain, for ev-
ery agent i and ε > 0 there exists some ζ with 0 ≤ ζ < ε such that agent i receives an
interesting decision by reporting θi = (ai , di , (ri , Li)) with

ri = v c
(ai ,di ,Li)

(θ−i ,ω)+ ζ .

There is also another, trivial remark we can make immediately from Definition 5.2:

4See, for example, [Rudin, 1976, Definition 1.8].

62

5.2. MONOTONICITY

COROLLARY 5.4 Given an online mechanism on a single-valued online domain, for ev-
ery agent i , type profile (θi ,θ−i) and (external) stochastic events ω,

xi (θi ,θ−i ,ω) = 1 =⇒ ri ≥ v c
(ai ,di ,Li)

(θ−i ,ω).

In words, if an agents receives an interesting decision then she must have reported at least
her critical value (as her reward ri).

There is something important we must point out here. If we look with some attention
at Definition 5.2, it is easy to see that the critical value of an agent is independent of the the
agent’s reported reward ri as well as of other agents who are going to arrive after her own
departure di , due to the online character of the mechanism. These will play major role in
establishing truthfulness later at section 5.3.

For the following definition we need to have an ordering upon every agent’s possible
reported types5 Ci . We define a partial6 ordering

θi �θ θ
′
i ⇐⇒ (a′i ≤ ai)∧ (di ≤ d ′i)∧ (ri ≤ r ′i)∧ (Li = L′i),

for all types θi = (ai , di , (ri , Li)),θ
′
i = (a

′
i , d ′i , (r

′
i , L′i)) ∈ Ci . However, we do not define in

the “expected” way the shorthand θi ≺θ θ′i ⇐⇒ (θi �θ θ′i)∧ (θi 6= θ′i), but instead

θi ≺θ θ
′
i ⇐⇒ (θi �θ θ

′
i)∧ (θi 6= θ

′
i)

⇐⇒ (a′i ≤ ai)∧ (di ≤ d ′i)∧ (ri < r ′i)∧ (Li = L′i). (5.2)

This definition will simplify substantially the presentation of our results in this project.
We also say that an arrival-departure time interval [a′i , d ′i] is tighter than an other interval
[ai , di], if ai ≤ a′i and d ′i ≤ di or, equivalently, if [a′i , d ′i]⊆ [ai , di].

DEFINITION 5.5 (Monotonic policy) A deterministic policy x, in a single-valued on-
line domain, is called monotonic if, for every agent i and types θi ,θ

′
i ∈Ci with θi ≺θ θ′i ,

xi (θi ,θ−i ,ω) = 1 =⇒ xi (θ
′
i ,θ−i ,ω) = 1,

for every θ−i ∈C−i ,ω ∈Ω.

5From now on we shall often write Ci instead of C (θi) (and C−i instead of C (θ−i)), if this is to keep our
notation lighter.

6The fact that �θ is a partial ordering on every C (θi) is trivial, based on the usual ordering ≤ of R.

63

CHAPTER 5. SINGLE-VALUED ONLINE DOMAINS

In words, in a monotonic decision policy, if an agent gets allocated7 by reporting a type
θi then she will also be allocated if she reports a “better” type θ′i , that is, if she reports an
earlier arrival time or a later departure time, coupled with a higher reward (see equation
(5.2)). We have slightly deviate from the standard, less natural definition given in our
references Parkes [2007], Hajiaghayi et al. [2005] and Parkes and Duong [2007]. We have
done so by adapting cautiously the definition of the “strict” ordering ≺θ in the way. We
feel that our exposition is more simple, thus capturing better the essence of monotonicity,
overcoming obscuring technicalities.

COROLLARY 5.6 Given a (deterministic) monotonic decision policy x, for every agent i
with type θi = (ai , di , (ri , Li)),

ri > v c
(ai ,di ,Li)

(θ−i ,ω) =⇒ xi (θi ,θ−i ,ω) = 1.

PROOF Let agent i have type θi = (ai , di , (ri , Li)) with ri > v c
(ai ,di ,Li)

(θ−i ,ω). Then,
from Corollary 5.3, there exists some ζ > 0 such that agent i gets allocated by reporting
type θ′i = (ai , di , (r

′
i , Li)) where

ri > r ′i = v c
(ai ,di ,Li)

(θ−i ,ω)+ ζ > v c
(ai ,di ,Li)

(θ−i ,ω).

Then, it is trivial to see that θ′i ≺θ θi and thus, because xi (θ
′
i ,θ−i ,ω) = 1 (agent i gets

allocated by reporting θ′i), xi (θi ,θ−i ,ω) = 1 due to monotonicity (see Definition 5.5).o

This simply means that monotonic mechanisms have the “nice” property to allocate
every agent that places a any bid greater than her critical value. This displays a “canonical”
behaviour of such mechanisms which will be the backbone for characterizing truthfulness
at section 5.3. Notice here that if the infimum in Definition 5.2 is also a minimum (e.g. if
Wi is discrete) then it is trivial to show the stronger necessary condition

xi (θi ,θ−i ,ω) = 1 ⇐⇒ ri ≥ v c
(ai ,di ,Li)

(θ−i ,ω).

For the next, we will also need a

7Due to the fact that when we study our single-valued domains we usually have in mind auction envi-
ronments, sometimes we speak of allocations instead of interesting decisions. We also say that an agent is
allocated instead of saying that she is satisfied.

64

5.3. TRUTHFULNESS

LEMMA 5.7 Given a mechanism with a (deterministic) monotonic decision policy, for ev-
ery agent i her critical value is a (weakly) increasing function with respect to tighter arrival-
departure intervals. That is,

[a′i , d ′i]⊆ [ai , di] =⇒ v c
(ai ,di ,Li)

(θ−i ,ω)≤ v c
(a′i ,d

′
i ,Li)
(θ−i ,ω),

for every agent i , types θi = (ai , di , (ri , Li)),θ
′
i = (a

′
i , d ′i , (r

′
i , L′i)) ∈ Ci , θ−i ∈ C−i and

(external) stochastic events ω.

PROOF We fix some agent i , types θ−i and stochastic events ω and to arrive to a con-
tradiction we assume that there exist types θi = (ai , di , (ri , Li)),θ

′
i = (a

′
i , d ′i , (r

′
i , L′i)) ∈Ci

such that

[a′i , d ′i]⊆ [ai , di] but v c
(a′i ,d

′
i ,Li)
(θ−i ,ω)< v c

(ai ,di ,Li)
(θ−i ,ω).

As we’ve noticed before, the critical values are independent of the rewards, so we are
free to choose

v c
(a′i ,d

′
i ,Li)
(θ−i ,ω)< r ′i < ri < v c

(ai ,di ,Li)
(θ−i ,ω). (5.3)

In addition, from Corollary 5.3, this r ′i can be chosen to

xi (θi ,θ−i ,ω) = 1

But we also know that ai ≤ a′i , d ′i ≤ di and r ′i < ri , from (5.3), thus θ′i ≺θ θi and so,
monotonicity of our decision policy (see Definition 5.5), gives xi (θi ,θ−i ,ω) = 1 which
contradicts (5.3) through Definition 5.2. o

5.3 Truthfulness

THEOREM 5.8 (sufficient condition) In any single-valued online domain with no early-
arrivals and no late-departures, every (deterministic) monotonic decision policy x can be
truthfully implemented, i.e. there is a payment policy p such that mechanism M T =
(x,{pi}i∈N) is truthful.

PROOF Let x be the monotonic decision policy. Define a payment policy p:

65

CHAPTER 5. SINGLE-VALUED ONLINE DOMAINS

p t
i (h

t) =

v c
(bai ,

bdi ,Li)
(bθ−i ,ω), if xi (bθi ,

bθ−i ,ω) = 1∧ t = bdi ,

0, otherwise,

for every agent i with reported type bθi = (bai ,
bdi , (bri , Li)) and mechanism state h t at time

period t . This means that agent’s i payment is

pi (bθi ,
bθ−i ,ω) =

bdi
∑

t=bai

p t
i (h

t) = p
bdi

i (h
bdi) =

v c
(bai ,

bdi ,Li)
(bθ−i ,ω), if xi (bθi ,

bθ−i ,ω) = 1,

0, otherwise.

Simply, only allocated agents pay and only at their departure time, making critical-value
payments. Now, we have to show that mechanismM T is truthful.

Fix some agent i , types θ−i and (external) stochastic eventsω. Let θi = (ai , di , (ri , Li))
be agent’s i true type and θ′i = (a

′
i , d ′i , (r

′
i , Li)) a misreport of this type. Then, due to

our limited misreports assumption, [a′i , d ′i]⊆ [ai , di] and by Lemma 5.7,

v c
(ai ,di ,Li)

(θ−i ,ω)≤ v c
(a′i ,d

′
i ,Li)
(θ−i ,ω). (5.4)

Depending on whether agent i receives an interesting decision or not by reporting her
true type, there are two possible cases to analyze:

Case 1. If xi (θi ,θ−i ,ω) = 1, agent i gets allocated, v c
(ai ,di ,Li)

(θ−i ,ω) ≤ ri from Defi-
nition 5.2 and has utility

ui (θi ,θi ,θ−i ,ω) = xi (θi ,θ−i ,ω) · ri − pi (θi ,θ−i ,ω) = ri − v c
(ai ,di ,Li)

(θ−i ,ω)≥ 0.

Then, by misreporting θ′i , either xi (θ
′
i ,θ−i ,ω) = 0 and

ui (θi ,θ
′
i ,θ−i ,ω) = 0− 0= 0≤ ui (θi ,θi ,θ−i ,ω),

or xi (θ
′
i ,θ−i ,ω) = 1 and

ui (θi ,θ
′
i ,θ−i ,ω) = ri − v c

(a′i ,d
′
i ,Li)
(θ−i ,ω)

≤ ri − v c
(ai ,di ,Li)

(θ−i ,ω), from (5.4),

= ui (θi ,θi ,θ−i ,ω).

Case 2. If xi (θi ,θ−i ,ω) = 0, agent i is not allocated, v c
(ai ,di ,Li)

(θ−i ,ω) ≤ ri from

66

5.3. TRUTHFULNESS

Corollary 5.6 and has utility ui (θi ,θi ,θ−i ,ω) = 0. Then, by misreporting θ′i , either
xi (θ

′
i ,θ−i ,ω) = 0 and

ui (θi ,θ
′
i ,θ−i ,ω) = 0= ui (θi ,θi ,θ−i ,ω),

or xi (θ
′
i ,θ−i ,ω) = 1 and

ui (θi ,θ
′
i ,θ−i ,ω) = ri − v c

(a′i ,d
′
i ,Li)
(θ−i ,ω)

≤ ri − v c
(ai ,di ,Li)

(θ−i ,ω), from (5.4),

≤ 0

= ui (θi ,θi ,θ−i ,ω).

In any case, we showed that

ui (θi ,θi ,θ−i ,ω)≥ ui (θi ,θ
′
i ,θ−i ,ω),

establishing truthfulness (from Definition 4.3). o

From the choice of payments in the constructive proof of the above theorem, we immedi-
ately get that

COROLLARY 5.9 . Every monotonic (online) mechanism that collects critical-value pay-
ments, is truthful.

LEMMA 5.10 Given a truthful, IR online mechanism in a single-valued domain, every
allocated agent’s payment must be independent of her reported reward, i.e. for every agent
i and types θi = (ai , di , (ri , Li)), θ

′
i = (ai , di , (r

′
i , Li)),

xi (θi ,θ−i ,ω) = xi (θ
′
i ,θ−i ,ω) = 1 =⇒ pi (θi ,θ−i ,ω) = pi (θ

′
i ,θ−i ,ω).

PROOF To arrive to a contradiction, fix some agent i , types θ−i and stochastic events
ω and suppose that exist types θi = (ai , di , (ri , Li)), θ

′
i = (ai , di , (r

′
i , Li)) with ri 6= r ′i ,

such that xi (θi ,θ−i ,ω) = xi (θ
′
i ,θ−i ,ω) = 1 but pi (θi ,θ−i ,ω) 6= pi (θ

′
i ,θ−i ,ω). Without

loss of generality assume that

pi (θ
′
i ,θ−i ,ω)< pi (θi ,θ−i ,ω).

67

CHAPTER 5. SINGLE-VALUED ONLINE DOMAINS

Then, if agent’s i true type were θi ,

ui (θi ,θi ,θ−i ,ω) = ri − pi (θi ,θ−i ,ω)< ri − pi (θ
′
i ,θ−i ,ω) = ui (θi ,θ

′
i ,θ−i ,ω)

and she would be better off misreporting θ′i , contradicting truthfulness. o

PROPOSITION 5.11 (Critical-value payment) In any single-valued online domain, ev-
ery truthful, IR mechanism must collect, form each allocated agent, payment equal to her
critical value, i.e.

x(θi ,θ−i ,ω) = 1 =⇒ pi (θi ,θ−i ,ω) = v c
(ai ,di ,Li)

(θ−i ,ω),

for every agent i .

PROOF Fix some allocated agent i with (true) type θi , types θ−i and stochastic events
ω. To get to a contradiction, suppose that pi (θi ,θ−i ,ω) 6= v c

(ai ,di ,Li)
(θ−i ,ω) and analyze

the following cases:
Case 1. pi (θi ,θ−i ,ω)< v c

(ai ,di ,Li)
(θ−i ,ω). If agent i had true type θ′i = (ai , di , (r

′
i , Li))

with
pi (θi ,θ−i ,ω)< r ′i < v c

(ai ,di ,Li)
(θ−i ,ω),

she wouldn’t get allocated by reporting. But then, she could lie and misreport θi and
get allocated with positive utility

ui (θ
′
i ,θi ,θ−i ,ω) = r ′i − pi (θi ,θ−i ,ω)> 0,

contradicting truthfulness.
Case 2. v c

(ai ,di ,Li)
(θ−i ,ω)< pi (θi ,θ−i ,ω). From Corollary 5.3 we know that there is

some r ′i with
v c
(ai ,di ,Li)

(θ−i ,ω)≤ r ′i < pi (θi ,θ−i ,ω),

such that agent i gets allocated by reporting θ′i = (ai , di , (r
′
i , Li)). But then, if θ′i were

her true type she would receive negative utility

ui (θ
′
i ,θ
′
i ,θ−i ,ω) = r ′i − pi (θ

′
i ,θ−i ,ω)

= r ′i − pi (θi ,θ−i ,ω), from Lemma 5.10,

< 0,

68

5.3. TRUTHFULNESS

contradicting IR. o

DEFINITION 5.12 (No allocation - no payment) We say that a mechanismM T = (x,{pi}i∈N)
does not pay unallocated agents, if for every type profile θ ∈C and agent i ,

xi (θi ,θ−i ,ω) = 0 =⇒ pi (θi ,θ−i ,ω)≥ 0.

Remember (page 50) that negative payments pi < 0 express payments made from the mech-
anism to agent i , which justifies the expression “the mechanism does not pay”. This as-
sumption, together with IR, is sufficient to ensure us a desirable, canonical property of
no-allocations at our single-valued environments:

COROLLARY 5.13 (No allocation - no utility) Given an IR mechanismM T = (x,{pi}i∈N),
in a single-valued online domain, that does not pay unallocated agents, for every agent i ,
type profile θ ∈C and (external) stochastic events ω ∈Ω,

xi (θi ,θ−i ,ω) = 0 =⇒ ui (θi ,θi ,θ−i ,ω) = 0,

i.e. non-allocated agents have zero utility.

PROOF If πi (θi ,θ−i ,ω) = 0, from Definition 5.1 we have ui (θi ,θi ,θ−i ,ω) = 0 −
pi (θi ,θ−i ,ω) = −pi (θi ,θ−i ,ω), thus ui (θi ,θi ,θ−i ,ω) ≤ 0 by our no allocation - no
payment assumption (Definition 5.12). This, together with IR (equation (4.2)), gives us
the desired ui (θi ,θi ,θ−i ,ω) = 0. o

THEOREM 5.14 (necessary condition) In any single-valued online domain with no early-
arrivals and no late-departures, every truthful, IR mechanism that does not pay unallocated
agents must have a monotonic decision policy.

PROOF Fix some agent i , types θ−i and stochastic eventsω. To get to a contradiction,
suppose that there exist types θi = (ai , di , (ri , Li)), θ

′
i = (a

′
i , d ′i , (r

′
i , Li)) such that θi ≺θ

θ′i and xi (θi ,θ−i ,ω) but xi (θ
′
i ,θ−i ,ω) = 0. Then

a′i ≤ ai , di ≤ d ′i , Li = L′i , ri < r ′i

and v c
(ai ,di ,Li)

(θ−i ,ω)≤ ri , thus v c
(ai ,di ,Li)

(θ−i ,ω)≤ ri < r ′i . Choose a reward bri such that

v c
(ai ,di ,Li)

(θ−i ,ω)< bri < r ′i and xi (bθi ,θ−i ,ω) = 1, (5.5)

69

CHAPTER 5. SINGLE-VALUED ONLINE DOMAINS

where bθi is a new type bθi = (ai , di , (bri , Li)). We can do that, by Corollary 5.3 . If θ′i
was agent’s i true type, she would not get allocated by reporting it (we have assumed
x(θ′i ,θ−i ,ω) = 0), thus having zero utility ui (θi ,θ

′
i ,θ−i ,ω) = 0 (Corollary 5.13). But

then she could do better by misreporting bθi , getting allocated (from (5.5)) and achieving
utility

ui (θi ,
bθi ,θ−i ,ω) = r ′i − pi (bθi ,θ−i ,ω)

= r ′i − v c
(ai ,di ,Li)

(θ−i ,ω), from Proposition 5.11,

> 0, from (5.5),

contradicting truthfulness. o

Single-valued domains as well as monotonicity and all the characterization results that
deploy it in this Chapter 5 can be easily applied in classic (offline) Mechanism Design, pro-
viding an important addition to the only characterization tool Proposition 2.13 (page 32)
we had so far for the offline setting. For an exposition in the limits of offline Mechanism
Design, see [Nisan, 2007, section 9.5.4].

70

Part C

Specific Online Auctions

71

Chapter 6

Expiring Items Auctions

Consider the following problem setting: We have a dynamic, direct-revelation mechanism
environment (in the way we have already defined it in Chapter 4) where agents N arrive
over time and each makes a single report bθi = (bai ,

bdi , bwi) about her type, upon her arrival
time bai . Also, we have a single, re-usable item to allocate at each time period t ∈ T (to
some agent i ∈N). This makes our environment essentially an auction environment and
that is why the valuation component wi of player’s i type is called her bid and our agents
are also referred to as bidders The very important fact about this auction setting is that we
further assume that every agent is interested in being allocated with one instance of the item
(at some time period while she is active) and does not value more the allocation of more
instances. Furthermore, naturally enough, every agent has zero value for the receipt of no
items. From the above, it is easy to see that the auction environment we just described is a
single-valued online domain (see Chapter 5), with the interesting set of each bidder being
the set of decisions that allocate at least one instance to her.

Due to the fact that interesting sets are here defined in such a clear and easy way,
it is common practice to remove the Li component from the formal expression θi =
(ai , di , (Li , ri)) of agents’ types in single-valued domains, and leaving bid wi to essentially
represent only bidder’s i reward ri (value for getting allocated). From now on we will refer
only to bids wi and by that we will mean exactly this value ri . For a further comment
on notation, since in this environment we do not allow for any external stochastic events,
parameter ω will be removed from all our valuation expressions. Taking all these into
consideration, we will denote agent’s i critical value (recall Definition 5.2, page 62) simply
by v c

(ai ,di)
(θ−i) (instead of the more involved v c

(ai ,di ,Li)
(θ−i ,ω)) and refer to it as critical bid,

due to the auction interpretation of our problem setting.

A mechanismA =
�

x,{pi}i∈N
�

in our problem setting, from now on called auction,
receives its input online as a type profile bθ= (bθ1,

bθ2, . . . ,
bθN) and dynamically defines:

73

CHAPTER 6. EXPIRING ITEMS AUCTIONS

• Which agent i gets allocated at every time period t , shown by the decision policy

x t (bθ) = i .

If no agent gets allocated at time t then we define x t (bθ) = 0. Due to the online
character of our auctions, it is obvious that each decision x t (bθ)must be made before
the end of period t and taking into consideration only types bθi with (bai ≤ t), i.e. of
agents that have arrived until current time period t . No knowledge of future types
is possible.

• What each agent i has to pay, shown by the payment policy

pi (bθi ,
bθ−i) ∈R≥0,

here adopting the no-deficit principle (see page 50). Payment pi (bθi ,
bθ−i) must be

collected from agent i before di when she leaves the auction.

It is easy to see that auction A is essentially an online algorithm with input bθ. By deter-
mining an objective function we can define an optimization problem and apply our com-
petitive analysis techniques and notions from Chapter 3 to study our auction problems.
Here, the goal of the “mechanism designer” (a.k.a. auctioneer) in our problem setting
would be to design an auction A =

�

x,{pi}i∈N
�

with the maximum possible efficiency
(see Definition 2.14, page 33 and (5.1), page 62), i.e. to maximize

EA (bθ) = Ex(bθ) =
∑

i∈N
xi (bθi ,

bθ−i) ·wi , (6.1)

for all possible type profile reports bθ.

Finally note a fine point: since bθ = (bθ1,
bθ2, . . . ,

bθN) is revealed online, our auction does
not know the size N of the bidders’ spaceN nor for how long it is going to last, until our
adversary chooses to end it.

DEFINITION 6.1 (CEI) We will refer to the above optimization (maximization) prob-
lem setting, coupled with the no early-arrivals and no late-departures assumptions1, as the
Canonical Expiring-Items (CEI) problem.

1See section 4.2

74

6.1. THE GREEDY AUCTION

6.1 The Greedy Auction

Now, we are ready to construct a specific online auction for our CEI problem:

DEFINITION 6.2 (GREEDY AUCTION) The online Greedy Auction is an auction for
the CEI problem defined by:

• Decision policy: at every time point t , allocate an item to the unassigned (unallocated
so far) agent with the highest bid. Break ties randomly.

• Payment policy: Every agent i that gets allocated, pays her critical bid v c
(ai ,di)
(θ−i)

upon her departure di . Non-allocated agents make no payments.

The name “greedy” is easy to justify, since this auction allocates “myopically” to maximize
efficiency. Note also that if all agents are impatient, i.e. ai = di , then Greedy Auction is a
sequence of Vickrey (second-price) auctions (see page 29).

THEOREM 6.3 The Greedy Auction is IR and strongly truthful in the CEI environment

PROOF For IR, if an agent i with type θi = (ai , di , wi) is not allocated by the Greedy
Auction then makes no payment, pi (θi ,θ−i) = 0 and has utility ui (θi ,θi ,θ−i) = 0 ·
wi − 0 = 0. If she gets allocated, then pays pi (θi ,θ−i) = v c

(ai ,di)
(θ−i) and has utility

ui (θi ,θi ,θ−i) = wi − v c
(ai ,di)
(θ−i) ≥ 0, because wi ≥ v c

(ai ,di)
(θ−i), immediately from

Corollary 5.4. In any case, ui (θi ,θi ,θ−i)≥ 0.

For truthfulness, let bθi = (bai ,
bdi , bwi) be a misreport of the true type θi = (ai , di , wi)

of agent i , which gets agent i allocated. Then, its not difficult to see that

v c
(ai ,di)
(θ−i)≤ v c

(bai ,
bdi)
(θ−i). (6.2)

Due to no early-arrivals and no late-dipartures, [bai ,
bdi] ⊆ [ai , di] and from the defini-

tion of Greedy Auction, if a bid gets agent i allocated some time in the tighter time
interval [bai ,

bdi], so will in the wider [ai , di], which proves equation (6.2). If agent i is
not allocated by reporting true type θi = (ai , di , wi), this means that wi < v c

(ai ,di)
(θ−i)

and by (6.2), wi < v c
(bai ,

bdi)
(θ−i) and thus

ui (θi ,
bθi ,θ−i) = wi −w c

(bai ,
bdi)
(θ−i)< 0,

75

CHAPTER 6. EXPIRING ITEMS AUCTIONS

which is not acceptable, because of IR. If, on the other hand, telling the truth gets agent
i allocated,

ui (θi ,θi ,θ−i) = wi − v c
(ai ,di)
(θ−i)

(6.2)
≥ wi − v c

(bai ,
bdi)
(θ−i) = ui (θi ,

bθi ,θ−i),

which proves truthfulness.

Alternatively, one could much more easily prove that the Greedy Auction is mono-
tonic and use Corollary 5.9 (page 67). o

6.2 Upper Bound

We now turn to study the performance of the Greedy Auction, in terms of competitive
analysis.

THEOREM 6.4 The Greedy Auction is 2-competitive for the CEI problem.

PROOF Let x be the Greedy Auction allocation, x∗ an optimal offline allocation and
some adversary chooses input types θ. Define

A=
�

all agents allocated by x
	

= {x t (θ) | t ∈ T }

B =
�

all agents allocated by both x and x∗
	

= {x t (θ) | t ∈ T }∪ {(x∗)t (θ) | t ∈ T }

C =
�

all agents allocated by x∗ only
	

= {(x∗)t (θ) | t ∈ T } \ {x t (θ) | t ∈ T }

Using this, we can express the efficiencies of our auctions as

Ex(θ) =
∑

i∈A

wi ,

Ex∗(θ) =
∑

i∈B

wi +
∑

i∈C

wi .

Now, notice that B ⊆A which (using here that wi > 0 for every agent i) gives

∑

i∈B

wi ≤
∑

i∈A

wi . (6.3)

Next, consider an agent i ∈ C allocated only by x∗ at some time period ti . At this
period ti , online x allocates to some other agent ji ∈ A for which wi ≤ w ji

(otherise π

76

6.3. LOWER BOUND

would have allocated i instead of ji). This gives us

∑

i∈C

wi ≤
∑

i∈C

w ji
≤
∑

j∈A

w j . (6.4)

By using equations (6.3) and (6.4) we take

Ex∗(θ) =
∑

i∈B

wi +
∑

i∈C

wi ≤V (π∗(θ)) =
∑

i∈A

wi +
∑

i∈A

wi = 2 · Ex(θ)

The above analysis shows that

CRCEI
x =max

θ

Ex∗(θ)

Ex(θ)
≤ 2

which means that Greedy Auction is indeed 2-competitive. o

This results gives us immediately an upper bound for the competitive ratio of our general
problem.

COROLLARY 6.5 For the CEI problem, CRCEI ≤ 2

6.3 Lower Bound

In this section, we prove a lower bound for our general CEI problem, showing also that
the upper bound of the previous section is tight. This also proves optimality of the Greedy
Auction.

THEOREM 6.6 No truthful, IR online auction can be (2−ε)-competitive for the CEI prob-
lem, for every 0< ε< 1.

PROOF Let A be an online auction and A ∗ be an optimal offline. Fix random 0 <
ε< 1. In a first scenario, assume that onlineA is given input only 2 agents i = 1,2 with
types

θ1 = (1,1, w(1+δ)) and θ2 = (1,2, w) (scenario I)

for some w ∈ R>0 and 0 < δ < ε
1−ε . OfflineA obviously allocates both agents, agent

1 at t = 1 and agent 2 at t = 2, having efficiency Ex∗(θ) = w(1+δ) +w = w(2+δ).
OnlineA has to also allocate both, otherwise its efficiency would be Ex(θ)≤ w(1+δ),
giving

CRCEI
A ≥

w(2+δ)

w(1+δ)
> 2− ε,

77

CHAPTER 6. EXPIRING ITEMS AUCTIONS

and finishing the proof of our theorem. In addition, agent 1 has positive utility. For this
we need to show that v c

(1,1)(θ−1) < w(1+δ). It is enough to show that v c
(1,1)(θ−1) ≤ w.

To arrive to a contradiction, suppose that v c
(1,1)(θ−1) > w. Then, because v c

(1,1)(θ−1) =
v c
(1,1)(θ2) is independent of δ, so we can choose δ small enough to v c

(1,1)(θ−1) > w(1+
δ) > w, which contradicts the definition of critical bid and the fact that agent 1 is
allocated.So, in this scenario

agent 1 is allocated at t = 1 (with positive utility)

agent 2 is allocated at t = 2

In a second scenario, we “reverse” the types of our two agents and give input

θ′1 = (1,2, w(1+δ)) and θ′2 = (1,1, w) (scenario II)

Like before, at scenario I, both agents must be allocated by onlineA . In addition, we
will show that agent’s 2 utility is positive. For this we have to show that w > v c

(1,1)(θ
′
−2).

We already know that w ≥ v c
(1,1)(θ

′
−2), because of the definition of critical bid. If w =

v c
(1,1)(θ

′
−2), we choose some α > 1 and replace only agent’s 2 bid with w ′ = αw > w in

both scenarios I and II, i.e. we redefine

θ1 = (1,1, w(1+δ)) and θ2 = (1,2, w ′) (scenario I)

θ′1 = (1,2, w(1+δ)) and θ′2 = (1,1, w ′) (scenario II)

If we choose α arbitrarily close to 1 so that αw < w+δ, nothing changes in our results
so far and we can repeat it for the new input. That means, w.l.o.g. we can assume that
w > v c

(1,1)(θ
′
−2). So, in this scenario we have

agent 1 is allocated at t = 2

agent 2 is allocated at t = 1(with positive utility)

Finally, in a third scenario, an adversary chooses as combination of scenarios I and
II, together with a third agent, giving as input

θ′1 = (1,2, w(1+δ)) and θ2 = (1,2, w ′) and θ3 = (2,2, M) (scenario III)

with M arbitrarily large. Online auctionA must decide who to allocate at t = 1 with-
out knowing the existence of agent 3 who’s going to arrive later at t = 2. This means

78

6.4. AN IMPOSSIBILITY RESULT

that only agent 1 or 2 can be allocated at t = 1. Furthermore, at t = 3 auctionA must
allocate the new agent with arbitrarily large bid M , otherwise its competitive ratio is
unbounded and our proof is complete. We now can conclude that the allocations in this
final scenario will be

agent 1 is allocated at t = 1 (∗)

agent 3 is allocated at t = 2,

because if agent 2 is allocated at t = 1 instead of agent 1, then agent 1 would have been
better to misreport type θ1 = (1,1, w(1+ δ)) instead of θ′1 = (1,2, w(1+ δ)). Then,
at t = 1 we would have been exactly like in scenario I, thus agent i would have been
allocated with positive utility. But his is not acceptable since contradicts truthfulness.
However, allocation policy (∗), is also not acceptable, because in a similar way agent 2
(which now unallocated) will be better misreporting θ′2 = (1,1, w), leading us to sce-
nario II and getting allocated with positive utility, again giving us a contradiction to
truthfulness. o

As an immediate consequence, taking into consideration Corollary 6.5, we have an exact
competitive ratio for our general problem

THEOREM 6.7 For our CEI problem,

CRCEI = 2.

By this, Theorem 6.4 shows that Greedy Auction is optimal for our CEI problem.

6.4 An Impossibility Result

As we saw in page page 55, the no late-departures is not as natural as the no early-arrivals.
However, relaxing it would lead us to the disastrous:

THEOREM 6.8 (IMPOSSIBILITY THEOREM) No thruthful, IR online auction has con-
stant competitive ratio in the CEI environment, if we relax the no late-departures assump-
tion and allow arbitrary misreports of departure.

PROOF LetA be an online auction,A ∗ be an optimal offline and M some arbitrarily
large integer. An adversary chooses time horizon t = 1,2, . . . , M and M agents with

79

CHAPTER 6. EXPIRING ITEMS AUCTIONS

types
θ1 = (1, M , w1),θ2 = (1, M , w2), . . . ,θM = (1, M , wm)

where w1, w2, . . . , wM ∈ (q , q +δ) for some q ∈ R>0 and δ > 0 arbitrarily small. Ob-
viously, the optimal A ∗ allocates all agents (we do not care in what order) and has
efficiency

EA ∗(θ) =
M
∑

i=1

wi >
M
∑

i=1

q =M · q .

First of all, we can assume that every allocated (by A) agent i = 1,2, . . . , M has
positive utility, i.e.

wi > v c
(1,M)(θ−i). (6.5)

Otherwise, for every allocated agent i with wi = v c
(1,M)(θ−i), replace wi with w ′i =

v c
(1,M)(θ−i)+ ζ , for some small ζ such that still w ′i ∈ (q , q +δ), keeping everything else
θ−i fixed. Then, agent i still gets allocated with her new type (1, M , w ′i) (Corollary 5.3).

Next will show that for every agent i

v c
(1,M)(θ−i) = v c

(1,1)(θ−i). (6.6)

Suppose that v c
(1,M)(θ−i)< v c

(1,1)(θ−i). Fix θ−i and replace agent’s i type with

θ′i = (1,1, w ′i) where w ′i = v c
(1,1)(θ−i)+ ε > v c

(1,M)(θ−i)

In this scenario, with proper selection of ε (Corollary 5.3) agent i gets allocated with
payment pi (θ

′
i ,θ−i) = v c

(1,1)(θ−i) (Proposition 5.11) and utility

ui (θ
′
i ,θ
′
i ,θ−i) = w ′i − v c

(1,1)(θ−i)

But if he misreports (arbitrary departure misreport, 1 < M) type θi = (1, M , wi) then
he can do better

ui (θ
′
i ,θi ,θ−i) = wi − v c

(1,M)(θ−i)> wi − v c
(1,M)(θ−i) = ui (θ

′
i ,θ
′
i ,θ−i),

which is absurd since our auction is truthful. With a similar (actually even easier) argu-
ment we can show that v c

(1,1)(θ−i)< v c
(1,M)(θ−i) is also impossible, which proves our case

for v c
(1,M)(θ−i) = v c

(1,1)(θ−i).

For the main step of our proof, to arrive to contradiction, suppose that some agent

80

6.4. AN IMPOSSIBILITY RESULT

k with type θk = (1, M , wk) gets allocated at some time period tk > 1. Then, consider a
scenario in which our auction is supplied dynamically with M − 1 additional types

(t , t ,β2t−3), t = 2,3, . . . , M

whereβ> q+δ is arbitrarily large. Both auctionA andA ∗ must allocate to one of the
initial agents with types (1, M , wi) at time period t = 1, because none of the new agents
is “active” yet. To stay constant competitive in this scenario, online A has to allocate all
new agents with types (t , t ,βt−1), at consecutive time periods t = 2,3, . . . , M . Indeed,
if t ∗ > 1 is the first time period at which A does not allocate new agent (t ∗, t ∗,βt ∗−1)
(allocating some with type (1, M , wi) instead), we stop the supply of the next new agents
with types (t , t ,βt−1), t = t ∗, . . . , M and after time period t ∗ only agents with types
(1, M , wi) can be allocated. Then, the efficiency ofA would be

EA (θ)< (q +δ)+
t ∗−1
∑

t=2

βt−1+(M − t ∗+ 1)(q +δ)

= (M + 2− t ∗)(q +δ)+β
βt ∗−2− 1

β− 1

= (M + 2− t ∗)(q +δ)+
βt ∗−1−β
β− 1

,

while the optimal is

EA ∗(θ)> q +
t ∗
∑

t=2

βt−1+(M − t ∗)q

= (M + 1− t ∗)q +β
βt ∗−1− 1

β− 1

= (M + 1− t ∗)q +
βt ∗ −β
β− 1

,

81

CHAPTER 6. EXPIRING ITEMS AUCTIONS

thus the competitive ratio would be

CRA >
EA ∗(θ)

EA (π(θ)
=

(M + 1− t ∗)q + βt∗−β
β−1

(M + 2− t ∗)(q +δ)+ βt∗−1−β
β−1

=
(M + 1− t ∗)q(β− 1)+βt ∗ −β

(M + 2− t ∗)(q +δ)(β− 1)+βt ∗−1−β

=
βt ∗ +[(M + 1− t ∗)q − 1] ·β− (M + 1− t ∗)q

βt ∗−1+[(M + 2− t ∗)(q +δ)− 1] ·β− (M + 2− t ∗)(q +δ)
→∞,

as β→∞. So, in this scenario, agent j is not allocated (0 utility) and would be better
to misreport type

θ′j = (1,1, w ′j) where w ′j = v c
(1,1)(θ− j)+ ε,

keeping everything else θ− j fixed, and get allocated (Corollary 5.3) with positive utility

ui (θ j ,θ
′
j ,θ− j) = wi − v c

(1,1)(θ− j)

> v c
(1,M)(θ− j)− v c

(1,1)(θ− j), from (6.5)

= v c
(1,1)(θ− j)− v c

(1,1)(θ− j), from (6.6)

= 0.

But this is not possible since our auction is truthful, proving that the online A does
not allocate agents at t > 1. Thus, A allocates to at most one agent, at t = 1, having
efficiency

EA (θ))≤ max
i=1,2,...,M

wi < q +δ.

This would be sufficient to complete the proof of our theorem, because

CRA ≥
EA ∗(θ)

EA (θ))
>

M q

q +δ
→M , as δ→ 0,

which shows that the competitive ratio is unbounded (M is arbitrarily large). o

This proof, taken again from Hajiaghayi et al. [2005] is an adaptation of a similar result of
Lavi and Nisan [2005].

82

6.5. EXTENSIONS – OPEN PROBLEMS

6.5 Extensions – Open Problems

The most natural extension to make to our CEI model is that of allowing for k > 1 re-
usable (identical) items. Fortunately enough, the competitive ratio of 2 continues to hold
for this general scenario and is achieved by the greedy auction which allocates the k-highest
bidding, unallocated agents. Fore more see [Hajiaghayi et al., 2005, 4.3]. Also, one can
consider a continuous-time (asynchronous) case. Under certain assumptions about that
“tricky” model, [Hajiaghayi et al., 2005, 4.2] show a competitive ratio of 5. Finally, if we
let aside our social sensibilities for a while and relax the demand for truthful mechanism
designing, we can show a lower bound of φ≈ 1.618, the golden ratio, for our problem (see
[Hajek, 2001]).

As far as open problems are concerned, the main challenge is to come up with non-
trivial randomization ideas, possibly improving our lower bounds. Also, there are some
questions with respect to the competitive ratio with respect to revenue. Generally, in this
case we use the ratio h = a

b (where a and b are the highest and lower, respectively, bids
submitted) as our competitive ratio’s parameter.

83

CHAPTER 6. EXPIRING ITEMS AUCTIONS

84

Chapter 7

Adaptive, Limited-Supply Auctions

Instead of having a reusable good to be allocated at every time period t ∈ T , now consider
having only one instance of a single, indivisible item to allocate to only one agent during the
auction’s execution. As we did in the case of the Canonical Expiring Items (CEI) problem
(Chapter 6), we can easily see that this auction setting is a single-valued online domain and
thus, the notational conventions and the discussion carried out during the introduction of
the CEI environment at pages 73–74, can (and will) be adopted also here, in the natural
way one would expect.

However, there is a very important point at which we are going to deviate substan-
tially from our exposition in Chapter 6. To analyse the performance of an online auction
for the CIE problem we used the standard competitive analysis approach of competing
against an optimal, offline auction algorithm that knows in advance the input type pro-
file bθ = (bθ1,

bθ2, . . . ,
bθN) of our players’ reports. That means, we let our adversary choose

the number N of agents, their bids wi as well as the order in which they are going to ar-
rive (by selecting the ai ’s) and for how long they are going to stay active (by selecting the
di ’s). On one hand, such a powerful adversarial model guarantees the competitiveness of
our algorithms in the worst possible scenario, but on the other hand it may be trivially
inappropriate to model our problem settings, as it’s the case for our current, one item
limited-supply environment. If, in our setting, the adversary could determine the size of
our bidders setN and the order in which they arrive, then he would wait until we allocate
the item to some agent and then he would right after insert a new agent in the auction,
one with a bid arbitrarily many times that of the agent’s we just allocated. We can not give
the item to the new agent, since our item is already sold. Remember that the bid equals
the value for an allocation and thus, the efficiency of our auction equals the bid of the
one allocated agent. An optimal offline algorithm would have allocated the agent with the
huge bid, achieving an efficiency arbitrarily many times that of our auction’s. The above

85

CHAPTER 7. ADAPTIVE, LIMITED-SUPPLY AUCTIONS

analysis shows us that the competitive analysis framework of Chapter 6 trivially produces
infinite competitive ratios for every possible auction one may construct in our current
setting.

That is why, we need to define a weaker adversarial model, yet natural enough for
our competitiveness results to make sense. Towards this, we adopt the random-ordering
hypothesis, i.e. we assume that our adversary can choose agents’ bids wi but has no control
on the order on which they are going to arrive, nor can he change online the number N of
the arriving agents, which is known in advance to the online auction. To be more specific,
we suppose that every online algorithm knows N and the time frame T , T = {1,2, . . . ,T },
and that the adversary chooses a set of N bids WN = {w j }Nj=1 and a set of arrival-departure

intervals IN = {[ak , dk]}
N
k=1 but he has no control over which bid w ji

will be matched to
arrival-departure [aki

, dki
] in order to construct a type θi = (aki

, dki
, w ji
), i = 1,2, . . . ,N .

Every such type θi is constructed by choosing randomly w ji
and (aki

, dki
). Formally, wi

and (aki
, dki
) are picked uniformly at random (and without replacement) from WN and IN ,

respectively, for every i = 1,2, . . . ,N .

In addition to our usual objective function when auction problems are concerned, i.e.
that of efficiency (see expression (6.1), page 74), here we will also consider the auction’s
revenue (recall Definition 2.15, page 34)

RA (θ) =
N
∑

i=1

pi (θi ,θ−i),

as an alternative measure of performance for our online auctions A on an input (type
profile) θ = (θ1,θ2, . . . ,θN). It goes without saying that the goal is to maximize revenue.
However, this carries a small implication. Instead of comparing our auction’s revenue RA
to that of an offline optimal auctionA ∗, which will greedily allocated the highest bidding
agent, i.e.1 RA ∗(θ) = w(1), we will use (offline) Vickrey (second-price) auction’s revenue as a
benchmark, i.e. RV (θ) = w(2). The main reason for doing this is that truthfulness is a major
priority in Mechanism Design and so we would like to compete against optimal algorithms
that respect this property. As we know (page 29), the Vickrey auction is optimal among
truthful auctions as far as revenue is concerned. Also it is the optimal offline auction
with respect to efficiency (even among non-truthful auctions) and so it is essentially the
benchmark we have been already using in the calculation of efficiency’s competitive ratios
so far (in the standard framework of competitive analysis).

1Generally, if x = (x1, x2, . . . , xn) ∈ Rn the by x(k) we denote the k-th highest component of x, k =
1,2, . . . , n. Notice that it is well defined if ai 6= a j for all i 6= j .

86

7.1. THE CLASSICAL SECRETARY PROBLEM

DEFINITION 7.1 (CLS) We will refer to the above optimization (maximization of two
possible objective functions) problem setting, coupled with the no-early arrivals assumption
, as the Canonical Limited-Supply (CLS) problem.

It is worth pointing out the absence of the no-late departures assumption from the def-
inition of the CLS problem, the reason for such a relaxation primarily being that in this
setting (in contrast to the CEI environment, see Theorem 6.8, page 79) such a restriction is
not necessary in order to guarantee “desirable” properties for our auctions. Also, note the
adoption of revenue as an additional, important, performance criterion. This is, mainly,
due to the fact that we are able to provide simple and solid results for the revenue compet-
itiveness of the auctions we will present for the CLS problem, but also due to nature and
interpretation of the CLS problem as a product-selling procedure, in which, obviously, the
auctioneer’s (seller’s) revenue is of major importance.

Based on our discussion preceding Definition 7.1, we have the following expressions
for the competitive ratios of an online auctionA = (x,{pi}

N
i=1) for the CLS problem with

respect to efficiency and revenue, respectively:

CRE
CLS(A) = max

WN , IN

w(1)

Eθ
�

∑N
i=1 xi (θ)wi

� (7.1)

CRR
CLS(A) = max

WN , IN

w(2)

Eθ
�

∑N
i=1 pi (θ)

� (7.2)

At these expressions, the adversary chooses the bids and arrival-departures sets WN , IN so
as to maximize these ratios (minimize our auction’sA performance/competitiveness) and
the expectations are taken with respect to the random-order hypothesis deciding randomly
the input θ= (θ1,θ2, . . . ,θN) (that is, quite informally, deciding the order in which the bids
arrive). Finally, note that equations (7.1) and (7.2) may seem more involved than they
actually are, since, eventually only one of the summation terms will be nonnegative (only
one allocation can be made), at each expression.

7.1 The Classical Secretary Problem

We now turn to study a well-known to computer scientists and probabilists, classic prob-
lem in the field of optimal stopping theory and which, not only will it help us prove some
of the competitiveness results for the auctions we are going to present for the CIE problem,
but it will also help as a justification for our choice of these particular auctions. Due to the
fact that the problem is simple to state, fundamental and interesting enough to be applied

87

CHAPTER 7. ADAPTIVE, LIMITED-SUPPLY AUCTIONS

to various problem settings and has a clear and powerful solution, it has been extended in
many directions and can be recognized under many variations. For an interesting review
of the area of “secretary problems” we refer to [Freeman, 1983]. Here we will study the
simplest form of the problem, known as the classical secretary problem: We know that N
applicants for a particular job opening (e.g. a secretary position) are going to interviewed,
on after the other. However, we do not know the specific order in which they are going
to arrive. In particular, we assume that all N ! possible permutations are equally likely to
occur. Immediately, after we interview an applicant we must decide whether to hire him
(in which case the interview process is finished) or not and this decision is irrevocable, i.e.
in case we reject him and move on to the next applicant we cannot regret that and hire
him at some following stage of the process. The important assumption here, is that we do
not know the qualifications of the applicants, until we actually interview them and, after
interviewing an applicant we can only determine his relative rank with respect to those
interviewed before him. We have no idea about the “quality” of a future arriving appli-
cant. Furthermore, we assume that no two applicants have the same qualifications (can
be equally ranked). The problem asks for the best time to stop the process, in order to
maximize the probability that the applicant we actually hired is the best one. We are partic-
ularly interested in the case of N →∞. Note that the way in which our applicants arrive
(random permutation) is essentially a simplified version of the random-order hypothesis
we made for the CLS problem (see page 86).

Let M (j), j = 1,2, . . . ,N , denote the highest ranked applicant among the first j arriv-
ing applicants. We will restrict our attention to threshold, learning algorithms for our
problem, i.e. algorithms which, for some k ∈ {1,2, . . . ,N − 1}, they just observe the first
k arriving applicants in order to learn M (k), without making any selection, and then hire
the first applicant to arrive and be more qualified than M (j). Let’s see what is the best
choice for k. Define the following probability (with respect to the random permutation of
applicants) events

Ai : “applicant i is the best”

Bi : “applicant i is hired”

Ci : “applicant i is the best and hired”.

Also, let S be the event of success, i.e. the event that we hire the best applicant. Our goal
is to maximize P[S]. A small note on notation: here we use i as an index of the order
in which the applicants arrive, i.e. by “applicant i” we mean “the i -th arriving applicant”,
and not explicitly of the applicants themselves. Obviously, no permutation can result to

88

7.1. THE CLASSICAL SECRETARY PROBLEM

two different best applicants (remember that we allow no ties), thus events Ai are mutually
disjoint and so it easy to see that P[S] =

∑N
i=1P

�

Ci

�

. But P
�

Ci

�

= P
�

Ai ∩Bi

�

and from
the definition of conditional probability P

�

Ci

�

= P
�

Ai

�

·P
�

Bi |Ai

�

. Finally,

P[S] =
N
∑

i=1

P
�

Ai

�

P
�

Bi |Ai

�

. (7.3)

Since we have a random permutation, each applicant i is equally likely to be the best
one, so P

�

Ai

�

= 1
N for every i = 1,2, . . . ,N . Let’s compute P

�

Bi |Ai

�

. Assume that
applicant i is the best. First of all, trivially P

�

Bi |Ai

�

= 0 for every i = 1,2, . . . , k since we
make no selection at this “learning” phase of our algorithm. For i ≥ k+1, the probability
of applicant i being hired equals the probability that no applicant better than the threshold
M (k) is among applicants k+1, k+2, . . . , i−1. But for applicant M (k) being the threshold
means that he is the best among applicants 1,2, . . . , k. Combining the above, we get that
P
�

Bi |Ai

�

equals the probability that the most highly ranked candidate among applicants
1,2, . . . , i − 1 actually arrives among the first k and, because it is equally likely to appear
at any of these positions 1,2, . . . , k we conclude that, for P

�

Bi |Ai

�

= k
i−1 . Combining all

these in (7.3) we get

P[S] =
N
∑

i=k+1

1

N

k

i − 1
=

k

N

N
∑

i=k+1

1

i − 1
=

k

N

N−1
∑

i=k

1

i

and approximating by integrals (see, e.g. [Cormen et al., 2001, p. 1067]), since 1
x is a

decreasing function of x,

k

N

∫ N

k

1

x
d x ≤ P[S]≤

k

N

∫ N−1

k−1

1

x
d x

and evaluating the integrals,

k

N
(lnN − ln k)≤ P[S]≤

k

N
(ln(N − 1)− ln(k − 1)). (7.4)

89

CHAPTER 7. ADAPTIVE, LIMITED-SUPPLY AUCTIONS

At first, note that expression (7.4) provides a rather tight lower bound for P[S], since

lim
N→∞

� k

N
(ln(N − 1)− ln(k − 1))−

k

N
(lnN − ln k)

�

=k · lim
N→∞

� 1

N
(ln(N − 1)− lnN)−

1

N
(ln k − ln(k − 1))

�

=k · lim
N→∞

� 1

N
ln

N − 1

N
− 0
�

, since ln
k

k − 1
≤ lnN ,

=k · lim
N→∞

ln N

È

1−
1

N
=k · ln1= 0

and by differentiating the lower bound L(k) = k
N (lnN − ln k) with respect to k, it is not

difficult to see that it achieves its maximum value for k = N
e . So, selecting k = N

e results at
(7.4) to the best lower bound for our probability of success

P[S]≥ L
�N

e

�

=
N
e

N

�

lnN − ln
N

e

�

=
1

e
ln

N
N
e

=
1

e
ln e =

1

e
.

Note, however, that we can not use k = N
e , as it is, to optimize our threshold mechanism,

because N
e /∈ N. Instead,we use k =

�

N
e

�

which has an insignificant effect on our derived
optimal lower bound, since

L
��N

e

��

=

�

N
e

�

N

�

lnN − ln
�N

e

��

≥
N
e − 1

N

�

lnN − ln
N

e

�

→ L
�N

e

�

,

as N →∞.

Summarizing, the optimal solution to the classical secretary problem is to interview the
first

�

N
e

�

applicants without hiring any of them and then hire the first applicant ranking

higher than all these first
�

N
e

�

candidates. This results to a probability of at least 1
e ≈ 36.8%

that we will actually hire the best candidate, which is quite satisfying if one thinks about
the unfavourable (for the employer) conditions under which the interviewing process is
taking place.

It seems like the first scientific paper in which the classical secretary problem was solved
is that of Lindley [1961]. However, the origins and motivation of the problem go way
before that publication and for a rather entertaining (though retaining a high scientific
standard) exposition of the history and the ideas of the problem we strongly recommend
[Ferguson, 1989]. For a more thorough analysis of the classical secretary problem (e.g.

90

7.2. ADAPTIVE THRESHOLD AUCTIONS

why it suffices to consider only threshold algorithms?) as well as an introduction to a
reach mathematical theory underpinning this classic problem we refer to a text in optimal
stopping theory, e.g. [Ferguson, 2007, chapter 2]. The problem has been extended and
generalized in many interesting and powerful ways, applying in many mathematical fields.
For the classic paper that set the foundations of that development, analyzing some standard
variations of the secretary problem we refer to Gilbert and Mosteller [1966].

7.2 Adaptive Threshold Auctions for the CLS Problem

We know return to the study of our CLS problem (Definition 7.1) and define a specific
family of auctions, parametrized by some k = 1,2, . . . ,N .

DEFINITION 7.2 (ADAPTIVE AUCTION) For every k = 1,2, . . . ,N defineA (k) to be
the following auction for the CLS problem:

(i) Learning Phase: Make no allocation until you receive the k’th bid at time period τ.
Let p ≥ q be the two top bids received so far.

(ii) Transition Phase: If some agent i with bid wi = p is still active at time period τ, then
allocate i for a payment of q (breaking ties randomly).

(iii) Accepting Phase: If no agent got allocated during the transition phase (i.e. at τ), allo-
cate the first agent to arrive after τ bidding at least p (no ties possible), for a payment
of p. If no such agent arrives, allocate the last bidder to arrive.

The reader would immediately recognize the essence of the threshold algorithm for the
classical secretary problem we presented in section 7.1 underlying the design of this family
of auctionsA (k) (especially for the case of k =

�

N
e

�

). Moreover, the term adaptive comes
exactly from this procedure of observing in order to learn and set the proper threshold
value p and, depending on weather the maximum bidding so far agent is still “alive”, adapt
appropriately. Apart from that, another familiar, classic auction makes its subtle appear-
ance, in particular the Vickrey auction. This is apparent at the transition phase, but also
consists the essence of the accepting phase (if we eventually reach it). These second-price
payments are the main reason for us being able to establish the following

THEOREM 7.3 For every k = 1,2, . . . ,N, the adaptive auction A (k) is IR and strongly
truthful for the CLS problem.

91

CHAPTER 7. ADAPTIVE, LIMITED-SUPPLY AUCTIONS

PROOF Proving IR is trivial, since every adaptive auction allocates for a payment not
exceeding the bid of the allocated agent. For truthfulness, fix some k = 1,2, . . . ,N ,
an agent i with true type θi = (ai , di , wi) and types θ−i . We must prove that (recall
Definition 4.3, page 55), for every θ′i ∈C (θi) and every possible random tie-braking (at
transition and accepting phases, see Definition 7.2) ofA (k),

ui (θi ,θi ,θ−i)≥ ui (θ
′
i ,θi ,θ−i).

Let τ, p and q be as in Definition 7.2 whenA (k) is run on input (θi ,θ−i) and τ′, p ′ and
q ′ be their respective values when agent i misreports θ′i , i.e. on input (θ′i ,θ−i). Note
that, due to no early-arrivals, for every possible misreport θ′i = (a

′
i , d ′i , w ′i) we have that

a′i ≥ ai . Thus, since all other agents’ arrival times are fixed, agent i can only delay (but
not accelerate) the reach of the transition phase, i.e. τ′ ≥ τ. Also, it is not difficult to see
that at most one agent (namely i) can be within the first k to arrive in the first auction
scenario (where i reports truthfully) but arriving after the transition phase in the new
auction (where i misreports θ′i). That means that the maximum bid p (up to time τ)
can “fall”, at the new auction, no lower than the second highest bid, i.e.

p ′ ≥ q . (7.5)

Now we have the following different cases to consider:

Case 1, ai ≤ di < τ. Then, from the Definition 7.2 ofA (k), agent i is not allocated,
thus ui (θi ,θi ,θ−i) = 0. MENTION THAT CANNOT RECEIVE AFTER TRUE
DEPARTURE. Even if, when agent i misreports θ′i ,A (k) decides to allocate her, this
would occur at some time point t ≥ τ′ ≥ τ > di , resulting to a zero utility for our
bidder.

Case 2, ai ≤ τ ≤ di . Here agent i is active at the transition phase so, if wi < q then
she is not allocated and ui (θi ,θi ,θ−i) = 0 > wi − q , if wi = q then either she is not
allocated and again ui (θi ,θi ,θ−i) > wi − q or she receives the item for a payment of q
in which case ui (θi ,θi ,θ−i) = wi − q , and, finally, if wi > q then wi = p (i.e. she has
the single maximum bid received so far) and gets allocated with ui = wi − q . So, in any
case we know that

ui (θi ,θi ,θ−i)≥ wi − q . (7.6)

Now, when agent i misreports θ′i there are to possible cases to consider:

Case 2a, a′i ≤ τ
′, i.e. our agent is active at the transition phase of the new auction.

Notice that, since all other agents’ types θ−i (and in particular their arrival times) are

92

7.2. ADAPTIVE THRESHOLD AUCTIONS

kept fixed, the fact that both ai ≤ τ and a′i ≤ τ
′ hold means that the k first agents of the

old auction (the one where i reports truthfully) are exactly the same as the first k of the
new one (their order of arrival, though, is not necessarily the same). With a little more
thought one can see that, whatever agent’s i new bid w ′i may be,

q ′ ≥min
¦

w ′i , q
©

. (7.7)

But then, even if i receives the item in the new auction, this would be in the transition
phase and would require a bid w ′i = p ′, thus, from (7.5),

wi ≥ q . (7.8)

Bidder’s i utility of this allocation would be

ui (θi ,θ
′
i ,θ−i) = wi − q ′, transition phase allocation,

≤ wi − q , from (7.7) and (7.8),

≤ ui (θi ,θi ,θ−i), from (7.6).

Case 2b, a′i ≤ τ
′. Then even if i receives the item in the new auction, this would be

an accepting phase allocation, resulting to a payment of p ′, thus

ui (θi ,θ
′
i ,θ−i) = wi − p ′

(7.5)
≤ wi − q

(7.6)
≤ ui (θi ,θi ,θ−i).

Case 3, τ < ai ≤ di . In this case, due to that a′i ≥ ai > τ, agents i misreporting has
no effect at all at the first two phases of our auction, meaning that

τ = τ′ and p = p ′ and q = q ′.

Also, if the auction allocates at some times prior to i ’s arrival, there is nothing she can do
to change that and receive the item. So, we will restrict our attention to the case where,
the old auction, makes an allocation to some agent at a time period (of the accepting
phase) with ai ≤ t ∗. If agent i is not the one allocated, then she must have reported
wi < p since she is the first to arrive in the interval [ai ,T] (remember that we allow no
ties at the arrival time of different agents). But then, even if she receives the item in the
new auction by misreporting θi , this would be for a utility of ui (θi ,θ

′
i ,θ−i) = wi− p ′ =

wi − p < 0 = ui (θi ,θi ,θ−i). On the other hand, if she is allocated at the first auction,
this is done for a payment p ′ = p which is independent of i ’s report θi and thus, agent

93

CHAPTER 7. ADAPTIVE, LIMITED-SUPPLY AUCTIONS

i can do nothing to improve her utility, i.e. reduce her payment. o

One could argue that, since we did all this effort to formally prove our truthfulness char-
acterization results of section 5.3, it would be more easy to use Corollary 5.9 (page 67)
in our proof, like we did for the case of the Greedy Auction for the CEI problem (see
Theorem 6.3). However, a more careful look brings up the matter of limited misreports.
We would need to have a generalization of Corollary 5.9 for arbitrary misreports of depar-
ture (we have assumed no restriction in departure misreports for our CLS model). Actu-
ally, though, this is possible, by introducing the notion of monotonic-late mechanisms (see
[Parkes, 2007, p. 420]).

7.3 Upper Bounds

THEOREM 7.4 The adaptive auction A (k) is α(k)-competitive for efficiency and β(k)-
competitive for revenue (for the CLS problem), where

α(k) =

N
k , if k ≤ N

e ,

N
k

1
ln N

k
, if k > N

e

and β(k) =

�

N
k

�2
, if k ≤ N

2 ,

N 2

k(N−k) , if k > N
2 ,

for every k = 1,2, . . . ,N.

PROOF We fix a k = 1,2, . . . ,N for our adaptive auction A (k) and let our adversary
select bids and arrival-departure interval sets WN and IN , respectively (see (7.1) and
(7.2),page 87). Then, a type profile θ = (θ1,θ2, . . . ,θN) is generated randomly (uni-
formly, by “matching” WN and IN), according to the random-ordering hypothesis (see
page 86) and then passed as an input to our auction algorithm. It is without loss of
generality to assume that the components of θ are ordered so as to wi = w(i) for all
i = 1,2, . . . ,N , i.e. w1 ≥ w2 ≥ . . . wN . This is because the indexes (identities) i of our
agents carry no information at all about our input2, which is completely determined by
our agents’ types, i.e. by the set {θ1,θ2, . . . ,θN}. The input (θ1,θ2, . . . ,θN) is exactly
the same as

�

θπ(1),θπ(2), . . . ,θπ(N)
�

to our adaptive auction, for every permutation π on
{1,2, . . . ,N}. Finally, let τ(θ) be the time period of our auctions transition phase (on
input θ and t ∗(θ) the time period at which it makes its (one and only) allocation.

First, let us consider the case of efficiency. Adapting equation (7.1) (page 87) to our
analysis (and removing the maximum with respect to WN , IN since we have “allowed”

2Note that the ordering (θ1,θ2, . . . ,θN) in no way determines the order of arrival for our agents, since
this is completely defined by their arrival times ai .

94

7.3. UPPER BOUNDS

for our adversary to make this selection), we take that

CRE
CLS(A (k)) =

w1

Eθ
�

∑N
i=1 xi (θ)wi

� =
w1

∑N
i=1P

�

xi (θ) = 1
�

wi

,

and since, obviously,
∑N

i=1P
�

xi (θ) = 1
�

wi ≥ P[x1(θ) = 1]w1,

CRE
CLS(A)≤

w1

P[x1(θ) = 1]w1

=
1

P[x1(θ) = 1]
. (7.9)

It remains to calculate P[x1 = 1], i.e. the probability that the agent with the highest
bid is the one who gets the item. There are to possible cases to consider, depending on
whether the allocation is made at the transition phase or during the accepting phase.

Case 1, t ∗(θ) = τ(θ). Condition on selling on the transition phase, the agent with
the highest bid seen during time interval [1,τ(θ)] is still active at τ(θ) and the one
allocated. So, in this case, the probability of selling to the highest bidding agent θ1

equals the probability that w1 is among these first k bids to arrive. Thus, based on the
random-ordering hypothesis,

P[x1(θ) = 1 | t ∗(θ) = τ(θ)] =
k

N
.

Case 2, t ∗(θ) > τ(θ). Condition on selling the item at the transition phase, the
probability of selling to the highest bidding agent equals the probability that the first bid
to arrive after τ(θ) being at least p is w1. With a little thought, one can see that in this
case our analysis “collapses” to that of the classical secretary problem (see section 7.1),
thus we can obtain a lower bound of

P[x1(θ) = 1 | t ∗(θ)> τ(θ)]≥ L(k) =
k

N
(lnN − ln k) =

k

N
ln

N

k
.

So, combining both cases

P[x1(θ) = 1]≥ min
k∈[1,N]

¨

k

N
,

k

N
ln

N

k

«

=

k
N , if k ≤ N

e ,

k
N ln N

k , if k > N
e

,

with the use of some basic calculus. Thus (7.9) results to the desired competitive ratio

95

CHAPTER 7. ADAPTIVE, LIMITED-SUPPLY AUCTIONS

of

CRE
CLS(A (k))≤

N
k , if k ≤ N

e ,

N
k

1
ln N

k
, if k > N

e

.

Now, let us consider the case of revenue. In the same spirit of our proof for the case of
efficiency, we can easily see that for the expected revenue of our adaptive auctionA

RA (θ) =E
θ

N
∑

i=1

pi (θ)

=
N
∑

i=1

N
∑

j=1

P
�

xi (θ) = 1∧ pi (θ) = w j

�

w j

≥ P[x1(θ) = 1∧ p1(θ) = w2]w2,

and, from equation (7.2) (page 87), for our competitive ratio,

CRR
CLS(A)≤

w2

P[x1(θ) = 1∧ p1(θ) = w2]w2

=
1

P[x1(θ) = 1∧ p1(θ) = w2]
. (7.10)

We have to compute P[x1(θ) = 1∧ p1(θ) = w2], i.e. the probability of the highest bid-
ding agent receiving the item for a second-price payment of w2. again we proceed by
case analysis:

Case 1, t ∗(θ) = τ(θ). Condition on selling on the transition phase, the probabil-
ity of selling to the highest bidding agent for a payment of w2 equals the probability
that both the two highest bids w1, w2 arrive during [1,τ(θ)], i.e. both w1 and w2

are among the first k bids to arrive. Notice that, these two events are independent,
due to our random-ordering hypothesis, so P[a1 ≤ τ(θ)∧ a2 ≤ τ(θ)] = P[a1 ≤ τ(θ)] ·
P[a2 ≤ τ(θ)] =

k
N ·

k
N .

Thus,

P[x1(θ) = 1∧ p1(θ) = w2 | t
∗(θ) = τ(θ)] =

�

k

N

�2

Case 2, t ∗(θ) > τ(θ). Condition on selling on the accepting phase, the probability
of selling to the highest bidding agent for a payment of w2 equals the probability that w2

arrives during [1,τ(θ)] (setting the threshold value p = w2) and w1 arrives after τ(θ).

96

7.3. UPPER BOUNDS

Thus,

P[x1(θ) = 1∧ p1(θ) = w2 | t
∗(θ)> τ(θ)] = P[a2 ≤ τ(θ)] ·P[a1 > τ(θ)]

=
k

N
·

N − k

N

=
k(N − k)

N 2
.

Combining both cases,

P[x1(θ) = 1∧ p1(θ) = w2]≥ min
k∈[1,N]

(
�

k

N

�2

,
k(N − k)

N 2

)

=

�

k
N

�2
, if k ≤ N

2 ,

k(N−k)
N 2 , if k > N

2 ,

hence (7.10) gives the desired

CRR
CLS(A (k))≤

�

N
k

�2
, if k ≤ N

2 ,

N 2

k(N−k) , if k > N
2 .

o

The natural question that immediately arises here is what would be the best choice of
k = 1,2, . . . ,N in order to optimize (i.e. minimize) these upper bounds on the performance
of our adaptive auctions, with respect to efficiency or revenue. It turns out that, as far as
efficiency is concerned, the good old trick of the classical secretary problem, i.e. setting
the stopping rule at k = bN

e c, does the trick:

COROLLARY 7.5 As N →∞, the adaptive auctionA (bN
e c) is e-competitive for efficiency

and e2-competitive for revenue. Furthermore, this choice of k = bN
e c minimizes α(k), the

upper bound for efficiency given in Theorem 7.4.

PROOF From Theorem 7.4, page 94,

CRE
CLS(A (k))≤ α(k) =

N
k , if k ≤ N

e ,

N
k

1
ln N

k
, if k > N

e .

Using basic calculus one can see that function N
k is strictly decreasing with respect to k

in the interval [1, N
e] and that N

k
1

ln N
k

is strictly increasing in [N
e ,N]. Thus, if we want

to optimize (i.e. minimize) our competitive ratio with respect to efficiency we must

97

CHAPTER 7. ADAPTIVE, LIMITED-SUPPLY AUCTIONS

choose k = N
e in order to minimize α(k),

α(Ne) =
N
N
e

= e .

However, N
e is not a valid choice, as it is, for our adaptive auctionsA (k), because N

e /∈N.
Instead, we choose k = bN

e c for an (asymptotically) negligible loss in performance, since

α(bN
e c) =

N
�

N
e

� ≤
N

N
e − 1

= e ·
N

N − e
→ e = α(Ne),

as N →∞.

As far as revenue is concerned, for the choice of k = bN
e c,

β(Ne) =

N
N
e

!2

= e2

and again it is trivial to check that e2 · (N
N+e)

2 ≤β(bN
e c)≤ e2 · (N

N−e)
2, thus

CRR
CLS(A (b

N
e c))≤β(b

N
e c)→β(Ne) = e2,

as N →∞. o

So, we have found an adaptive auction that is guaranteed to perform within a e ≈
2.718 factor of the optimal, offline (Vickrey) auction with respect to efficiency. This factor
becomes e2 ≈ 7.389 when revenue is concerned. Although the above Corollary 7.5 assures
us that this 2.718 efficiency upper bound is the best we can do with the tools we have from
Theorem 7.4, this is not the case with revenue and we would like to know if with some
other choice of k we can do better with respect to revenue. Ideally, though, we wouldn’t
like to see our upper bound of e ≈ 2.718 getting a lot “worse”. It seem like, for a choice
of k = bN

2 c all this is possible. For a “small” compromise on efficiency, from 2.718 to
2

ln2 ≈ 2.885 we can considerably improve our revenue upper bound from 7.389 to 4:

COROLLARY 7.6 As N → ∞, the adaptive auction A (bN
2 c) is 2

ln2 -competitive for effi-
ciency and 4-competitive for revenue. Furthermore, this choice of k = bN

2 cminimizesβ(k),
the upper bound for revenue given in Theorem 7.4.

98

7.4. EXTENSIONS – OPEN PROBLEMS

PROOF From Theorem 7.4, page 94,

CRR
CLS(A (k))≤β(k) =

�

N
k

�2
, if k ≤ N

2 ,

N 2

k(N−k) , if k > N
2 ,

as N →∞. Again, using basic calculus one can see that β(k) has a single minimum at
k = N

2 and

β(N2) =

N
N
2

!2

= 4.

Also,

α(N2) =
N
N
2

1

ln N
N
2

=
2

ln2
.

Like in the proof of Corollary 7.5, it is again trivial to check that,

β(bN
2 c)→β(N2) and α(bN

2 c)→ α(N2),

hence proving that

CRR
CLS(A (b

N
2 c))≤ 4 and CRE

CLS(A (b
N
2 c))≤

2

ln2
≈ 2.885. o

As an immediate corollary from the upper bounds derived for our two adaptive auc-
tionsA (bN

e c) andA (bN
2 c) in the preceding Corollaries 7.5 and 7.6, we get the following

upper bounds on the competitive ratios for the CLS problem in general:

COROLLARY 7.7 (Upper bounds) As N →∞, we have the following upper bounds for
the CLS problem:

CRE
CLS ≤ e ≈ 2.718 and CRR

CLS ≤ 4.

7.4 Extensions – Open Problems

In our analysis of the CLS problem we didn’t mention anything about lower bounds. In
fact, such results do exists, namely 2 and 3

2 for efficiency and revenue, respectively, and
can be found in [Hajiaghayi et al., 2004, 5.2]. As far as the multi-item k > 1 items case is
concerned, constant competitive ratios do exists, but are very large (see, again,[Hajiaghayi
et al., 2004, sec. 6]). The challenging area of Matroid Secretary Problems provides probably

99

CHAPTER 7. ADAPTIVE, LIMITED-SUPPLY AUCTIONS

the the most important extension to oyr CLS problem, as well as an asymptotically close
to 1 competitive ratio as k →∞ (for the multi-item case). For these, we refer to the work
of Babaioff et al. [2007] and Dimitrov and Plaxton [2008].

The most important open problem is that of analysing the case where bids are drawn
independently from an unknown distribution (instead of the random-ordering hypothe-
sis). Obviously, our upper bounds would continue to hold, though it is challenging to
come up with the right lower bound. Closing the gap between upper and lower bounds is
also a major problem.

100

Bibliography

K. Arrow. Social Choice and Individual Values. Yale University Press, 1951.

M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems, and online
mechanisms. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 434–443, 2007.

S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power of
randomization in on-line algorithms. Algorithmica, 11(1):2–14, 1994.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

E. Clarke. Multipart pricing of public goods. Public Choice, 11(1):17–33, 1971.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2nd edition, 2001.

C. Daskalakis, P. Goldberg, and C. Papadimitriou. The complexity of computing a nash
equilibrium. In Proceedings of the 38th annual ACM symposium on Theory of computing
(STOC), pages 71–78, 2006.

N. B. Dimitrov and C. G. Plaxton. Competitive weighted matching in transversal ma-
troids. Technical report, University of Texas, Austin, Department of Computer Science,
2008.

T. S. Ferguson. Who solved the secretary problem? Statistical Science, 4(3):282–296, 1989.

T. S. Ferguson. Optimal stopping and applications. Electronic text, 2007.
http://www.math.ucla.edu/ tom/Stopping/Contents.html.

A. Fiat and G. Woeginger, editors. Online Algorithms: The State of the Art. Springer, 1998.

P. R. Freeman. The secretary problem and its extensions: A review. International Statistical
Review, 51(2):189–206, 1983.

101

BIBLIOGRAPHY

E. J. Friedman and D. C. Parkes. Pricing wifi at starbucks - issues in online mechanism
design. In Proceedings of the 4th ACM Conference on Electronic Commerce (EC ’03), pages
240–241, 2003.

D. Fudenberg and J. Tirole. Game Theory. MIT Press, Cambridge, MA, 1991.

J. Geanakoplos. Three brief proofs of arrow’s impossibility theorem. Economic Theory, 26
(1):211–215, 2005.

A. Gibbard. Manipulation of Voting Schemes: A General Result. Econometrica, 41(4):
587–601, 1973.

J. Gilbert and F. Mosteller. Recognizing the maximum of a sequence. Journal of the Amer-
ican Statistical Association, 61(313):35–73, 1966.

T. Groves. Incentives in Teams. Econometrica, 41(4):617–631, 1973.

B. Hajek. On the competitiveness of on-line scheduling of unit-length packets with hard
deadlines in slotted time. In Proceedings of the 2001 Conference on Information Sciences
and Systems, 2001.

M. T. Hajiaghayi, R. D. Kleinberg, and D. C. Parkes. Adaptive limited-supply online
auctions. In Proceedings of the 5th ACM Conference on Electronic Commerce (EC ’04),
pages 71–80, 2004.

M. T. Hajiaghayi, R. D. Kleinberg, M. Mahdian, and D. C. Parkes. Online auctions with
re-usable goods. In Proceedings of the 6th ACM Conference on Electronic Commerce (EC’
05), pages 165–174, 2005.

A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Stacs 99: 16th Annual
Symposium on Theoretical Aspects of Computer Science, 1999.

V. Krishna. Auction Theory. Academic Press, 2002.

R. Lavi and N. Nisan. Competitive analysis of incentive compatible on-line auctions. In
Proceedings of the 2nd ACM Conference on Electronic Commerce, pages 233–241, 2000.

R. Lavi and N. Nisan. Online ascending auctions for gradually expiring items. In Proceed-
ings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’05), pages
1146–1155, 2005.

102

BIBLIOGRAPHY

D. V. Lindley. Dynamic programming and decision theory. Applied Statistics, 10(1):39–51,
1961.

A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic theory. Oxford University
Press, New York, 1995.

J. Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286–295, 1951.

J. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences of the United States of America, 36(1):48–49, 1950.

N. Nisan. Introduction to mechanism desing (for computer scientists). In N. Nisan,
T. Roughgarden, É. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chap-
ter 9. Cambridge University Press, 2007.

N. Nisan and A. Ronen. Algorithmic mechanism design (extended abstract). In The Thirty
First Annual ACM symposium on Theory of Computating (STCO99), pages 129–140, may
1999.

N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani, editors. Algorithmic Game Theory.
Cambridge University Press, 2007.

M. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

M. J. Osborne. An introduction to Game Theory. Oxford University Press, 2004.

M. Pai and R. Vohra. Optimal dynamic auctions. Technical report, Tech. rep., Kellogg
School of Management, Northwestern University, 2006.

C. Papadimitriou. On the complexity of the parity argument and other inefficient proofs
of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.

C. H. Papadimitriou. The complexity of finding nash equilibria. In N. Nisan, T. Rough-
garden, É. Tardos, and V. V. Vazirani, editors, Algorithmic Game Theory, chapter 2.
Cambridge University Press, 2007.

D. Parkes and Q. Duong. An ironing-based approach to adaptive online mechanism de-
sign in single-valued domains. Proc. 22nd National Conference on Artificial Intelligence
(AAAI’07), 2007.

D. C. Parkes. Online mechanism design. In N. Nisan, T. Roughgarden, É. Tardos, and
V. Vazirani, editors, Algorithmic Game Theory, chapter 16. Cambridge University Press,
2007.

103

BIBLIOGRAPHY

W. Rudin. Principles of Mathematical Analysis. McGraw-Hill International, 3rd (interna-
tional students) edition, 1976.

M. Satterthwaite. Strategy-proofness and arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functions. Journal of Economic
Theory, 10(2):187–217, 1975.

A. Schotter. Microeconomics: A Modern Approach. Addison Wesley, 3rd edition, 2001.

É. Tardos and V. V. Vazirani. Basic solution concepts and computational issues. In
N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani, editors, Algorithmic Game
Theory, chapter 1. Cambridge University Press, 2007.

V. Vazirani. Approximation Algorithms. Springer, 2001.

W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. The Journal of
Finance, 16(1):8–37, March 1961.

B. Vöcking. Selfish load balancing. In N. Nisan, T. Roughgarden, É. Tardos, and V. Vazi-
rani, editors, Algorithmic Game Theory, chapter 20. Cambridge University Press, 2007.

J. von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton
University Press, 3rd edition, 1953.

B. von Stengel. Equilibrium computation for two-player games in strategic and extensive
form. In N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani, editors, Algorithmic
Game Theory, chapter 3. Cambridge University Press, 2007.

104

Index

Adaptive Auction, 91
adversary, 43

oblivious, 45
affine maximizer, 39
approximation algorithm, 42
arrival time, 50
Arrow’s theorem, 22
auction

first-price, 29
sealed-bid, 28
second-price, 29
Vickrey, 29

battle of sexes game, 6
best response strategy, 6
bimatrix game, 10
Brouwer’s theorem, 14, 19
Brouwer, Luitzen E. J., 19

Canonical Expiring Items, 74
Canonical Limited Supply, 86
CEI, see Canonical Expiring Items
CLS, see Canonical Limited Supply
competitive analysis, 44
competitive ratio, 43, 44
cooperation, 3
critical bid, 73
critical value, 62, 68

decision, 22

decision rule, 27
decision-making, 21
departure time, 50
direct revelation mechanism, 52
direct-revelation mechanism, 28
dominant strategy, 11

equilibrium, 11, 25
DSIC, see truthfulness

early-arrivals, 54
efficiency, 33, 62
environment

Mechanism Design, 25
direct-revelation, 28

equilibrium, 5
in dominant strategies, 11, 25
mixed Nash, see Nash equilibrium
Nash, 14
pure Nash, 12

game
(strict) incomplete information, 23
bimatrix, 10
definition of, 9
finite, 9
full information, 21
in normal form, see game, strategic
matrix, 10
strategic, 9
symmetric, 10

105

INDEX

zero-sum, 10
Game Theory, 5, 18, 19

cooperative, 19
noncooperative, 19

Greedy Auction, 75
Groves mechanism, 35

implementation, 27
Impossibility result, 79
incentive compatibility, see truthfulness
indifference, 11
individual rationality, 36, 51
interesting decision, 60
interesting set, 60
IR, see individual rationality

Kakutani’s theorem, 14, 19

late-departures, 54
limited misreporting, 54

matching pennies game, 7
matrix

game, 10
utility, 10

mechanism, 27
direct revelation, 52
direct-revelation, 28
efficiency of, 33
Groves, 35
revenue of, 34
state, 52
truthful, see truthfulness
VCG, 37

mechanism environment, 25
mixed Nash equilibrium, see Nash equilib-

rium
mixed strategy, 13

monotonicity, 63
Morgenstern, O., 19

Nash equilibrium, 14
Nash’s Theorem, 14
Nash, John F., 14, 19
Neumann, J. von, 19
no-deficit principle, 50
NP-complete, 19

objective function, 41
online problem, 42
optimization problem, 41
outcome, 22, 25

payment rule, 27, 50
payoff, 4
player

selfish, 21
positive transfers, 37
PPAD, 19
prisoner’s dilemma game, 3, 4
pure Nash equilibrium, 12

random-ordering hypothesis, 86
rationality, 5
Revelation Principle, 30, 56
revenue, 34, 86
reward, 60

Secretary Problem, 87
selfish player, 21
single-valued domain, 60
Social Choice

function, 22
social welfare, 33
strategy

mixed, 13

106

INDEX

strong truthfulness, 56
symmetric game, 10

truthfulness, 29, 55
type, 23, 49

utility, 9, 51
utility function, 9, 23
utility matrix, 10

valuation component, 50
valuation function, 50
value, 50
VCG mechanism, 37

weighted, 39
Vickrey auction, 29

zero-sum game, 10

107

