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Abstract. We consider the problem of computing a (pure) Bayes--Nash equilibrium in the first-
price auction with continuous value distributions and discrete bidding space. We prove that when
bidders have independent subjective prior beliefs about the value distributions of the other bidders,
computing an \varepsilon -equilibrium of the auction is PPAD-complete, and computing an exact equilibrium
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1. Introduction. Auctions are prime examples of economic environments in
which the element of strategic behavior is prevalent. The associated theory can be
traced back to as early as the 1960s and the seminal work of Vickrey [70]. Over the
years, auction theory and mechanism design have produced some of the most cele-
brated results in economics, as can be evidenced, e.g., by the relevant 1996, 2007, and
2020 Nobel Prizes.1 Among the plethora of auction formats that this rich literature
has proposed, some stand out, such as the second-price auction of Vickrey [70] or the
revenue-maximizing auction of Myerson [56].

Arguably, though, the most fundamental auction format is that of the first-price
auction, in which the highest bidder wins and is charged an amount equal to her
bid. Compared to its counterparts mentioned above, the first-price auction does not
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 81

enjoy the same desirable incentive properties: participants may have an incentive to
misreport their true bids. At the same time, however, the first-price auction is very
natural and simple to describe, implement, and participate in, making it very suitable
for a range of important applications. As a matter of fact, several online ad exchanges,
including Google Ad Manager, have adopted this auction format for selling their ads,
which has been coined ``the first-price movement"" (see, e.g., [21, 58]).

There has been a large body of work studying incentives and bidding behavior in
first-price auctions, dating back to the original paper of Vickrey [70]. In particular,
the literature has studied the equilibria of the auction in an incomplete information
setting where the bidders have only probabilistic prior beliefs (or simply priors) about
the values of other bidders, via the lens of Bayesian game theory [38] (see also [39,
57]). Several different scenarios of interest have been analyzed; see, e.g., [1, 5, 11, 35,
45, 46, 48, 50, 51, 61, 63, 64]. It is no exaggeration to say that understanding the
Bayes--Nash equilibria of the first-price auction has historically been one of the most
important questions of auction theory.

The aforementioned literature has been primarily concerned with identifying con-
ditions under which (pure Bayes--Nash) equilibria are guaranteed to exist. Among
those, the seminal paper of Athey [1] has been pivotal in establishing the existence
of equilibria for fairly general settings with continuous priors. A natural follow-up
question posed explicitly by Athey [1], which was also very much present in earlier
works, is whether these equilibria can also be ``found""; in the context of the related
literature, this is usually interpreted as coming up with closed-form solutions that
describe them.

One of the most significant contributions of computer science to the field of game
theory is to formalize and systematically study this notion of ``finding"" or ``computing""
equilibria in games. Roughly speaking, an equilibrium can be efficiently computed if
it can be found using a limited number of standard operations that can be performed
by a computer, where ``limited"" here typically means a number which is a polynomial
function of the size of the input parameters.2 In perhaps the most important result
in computational game theory, Daskalakis, Goldberg, and Papadimitriou [19] proved
that in all likelihood, Nash equilibria of general games cannot always be computed
efficiently. In particular, they proved that the problem of computing a Nash equilib-
rium is complete for the class PPAD [60], which is widely believed to include problems
that are computationally hard to solve.

In this paper, we study the complexity of computing an equilibrium of the first-
price auction, in settings with continuous priors and discrete bids. We offer the
following main result.

Informal Theorem 1.1. Computing a (pure, Bayes--Nash) equilibrium of a
first-price auction with continuous subjective priors and discrete bids is PPAD-
complete.

This result can be interpreted intuitively as justification of why research in eco-
nomics has only had limited success in providing closed forms or characterizations
for the equilibria of the first-price auction. In addition, we consider it to be a
quite valuable addition to the literature of total search problems [53], as it con-
cerns the computation of equilibria of one of the most fundamental games in auction
theory.

2We remark that, contrary to earlier works in economics, Athey's interpretation of ``finding"" an
equilibrium was very much of a computational nature.
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82 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS

1.1. Discussion and further results. Below, we provide a more in-depth dis-
cussion of our main result and its assumptions, as well as some other related results
that we obtain along the way.

Continuous priors, discrete bids. Informal Theorem 1.1 applies to the case where
the bidders' beliefs about the values of other bidders are continuous distributions,
whereas the bidding space is a discrete set. The former assumption is standard in
auction theory (see, e.g., [57, section 3.11] or [44]). From a technical standpoint,
this also guarantees the existence of equilibria [1].3 The assumption of the discrete
bidding space is clearly motivated by any real-world scenario, in which the bids will
be increments of some minimum monetary amount, e.g., 1 dollar or 1 cent, depending
on the application. This setting has in fact been studied in several works for first-price
auctions in particular (see, e.g., [1, 8, 17, 22, 62]).

Subjective priors. In Informal Theorem 1.1 we assume that the priors are subjec-
tive, meaning that two different bidders might have different beliefs about the values
of some other bidder. In the auction theory literature, it is often assumed that a
``universal"" prior exists, which is common knowledge among all players; this is known
as the independent private values model. Indeed, such common priors are quite con-
venient in settings where there is an aggregate objective that needs to be optimized
in expectation (e.g., the social welfare or the seller's revenue), since they can be used
by the designer to tune the parameters of the auction in a way that works best for the
optimization goal at hand; this is the case, e.g., for Myerson's revenue-maximizing
auction [56].

From our perspective however, where the goal is to study the players' incentives
and compute an equilibrium, we believe it is natural to make the more general assump-
tion that priors are still independent, but subjective: this is enough for the bidders
to come up with their best responses. As a matter of fact, Harsanyi's original paper
[38], as well as classic textbooks in economics (e.g., [40, 57]) introduce Bayesian games
directly in the context of subjective beliefs.4 Similar notions of subjective priors and
``subjective equilibria"" have also been studied rather extensively for general Bayesian
games in economics [3, 4, 28, 37, 42, 43, 68] and computer science [27, 72].

The subjective priors assumption is necessary for our PPAD-hardness result, but
we would of course be very interested in settling the complexity for the case of common
priors as well. In fact, as we explain in section 7, we consider this to be one of
the most important open problems in computational game theory. Thus, besides
being of standalone interest, one can also see our result for subjective priors as an
important first step in the quest of answering this question. We remark that our
PPAD-membership result obviously applies to common priors, as this is just a special
case of subjective beliefs.

Approximate equilibria. While Informal Theorem 1.1 states the PPAD-
completeness of computing an equilibrium of the first-price auction, the formal state-
ment is in fact about \varepsilon -equilibria, i.e., stable states in which bidders do not wish to
unilaterally deviate unless they are better off by some small positive quantity \varepsilon . As
we explain in section 2, this is very much necessary: there are examples where the
equilibrium is irrational , and therefore cannot be computed exactly in many standard
models of computation. As a matter of fact, this is a common theme in most papers

3It is important to note here that in some versions of the problem, even mixed Bayes--Nash
equilibria are not guaranteed to exist; see, e.g., [45].

4These works also usually provide discussions on ``consistency"" conditions; e.g., see [38] and [57,
section 2.8]. See also a related discussion in section 7 of our work.
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 83

in equilibrium computation; see, e.g., [12, 19] or the survey of Goldberg [31] for a
related discussion.

Of course, the focus on \varepsilon -equilibria is only relevant for the membership result
in PPAD; the computational hardness result for approximate equilibria is clearly
stronger. In fact, we show that under some standard assumptions (see section 2), the
problem is PPAD-hard even when \varepsilon is allowed to be a (sufficiently small) constant,
independent of the input parameters. This is the strongest type of PPAD-hardness
one could hope for. For the computation of exact equilibria, Etessami and Yannakakis
[23] defined the computational class FIXP. At a high level, this class contains problems
that can be stated as computations of (possibly irrational) fixed points of functions
defined by means of algebraic circuits (see [73]). We complement our main result
about \varepsilon -equilibria with the following analogous result on exact ones.

Informal Theorem 1.2. Computing an exact (pure, Bayes--Nash) equilibrium
of a first-price auction with continuous subjective priors and discrete bids is FIXP-
complete.

One way to interpret a FIXP-completeness result in the standard computational
(Turing) model is in terms of strong versus weak approximations. A weak approxima-
tion is an \varepsilon -equilibrium as defined above and is captured by our PPAD-completeness
result. A strong approximation is a set of strategies represented by rational num-
bers, which are ``\varepsilon -close"" to an exact equilibrium (in terms of the max norm), and is
captured by our FIXP-completeness result. We remark that this is completely anal-
ogous to the computation of Nash equilibria in general games, see [23, 29] for a more
in-depth discussion.

The meaning of PPAD-completeness. As we mentioned earlier, a PPAD-hardness
result is interpreted as an indication that the problem cannot be solved in polynomial
time. In particular, it is as hard as finding Nash equilibria in general games [12,
19, 54, 67], market equilibria in Arrow--Debreu markets [13, 69], or solutions to fixed
point theorems [32, 60]. Additionally, PPAD has been shown to be hard under various
cryptographic assumptions (e.g., see [7, 15, 30, 65]), meaning that solving a PPAD-
hard problem would ``break"" those assumptions as well. On the other hand, an ``in
PPAD"" result can be interpreted as the existence of an (inefficient) algorithm that
uses a path-following argument to reach a solution.

An efficient algorithm. Besides our main PPAD- and FIXP-completeness results,
we identify a special case of the problem which can be solved efficiently, namely, when
the number of bidders and the size of the bidding space are constant, and the value
distributions are ``sufficiently smooth"" in the sense that they are given by piecewise
polynomial functions. To this end, we have the following theorem.

Informal Theorem 1.3. A (pure, Bayes--Nash) equilibrium of the first-price
auction can be computed in polynomial time when there are a constant number of
bidders, a constant-size bidding space, and continuous (subjective) priors which are
piecewise polynomial functions.

Informal Theorem 1.3 complements our PPAD- and FIXP-hardness results rather
tightly, as our reductions use a constant bidding space and very simple, piecewise
constant distributions, but a large number of bidders.

1.2. Related work. As we mentioned earlier, there is a significant amount of
work in economic theory on the equilibria of the first-price auction [1, 5, 14, 35,
45, 46, 48, 50, 51, 61, 63, 64]. Among those, the most relevant work to us is that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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84 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS

of Athey [1], who established the existence of pure Bayes--Nash equilibria in games
with discontinuous payoffs which satisfy the single crossing property of Milgrom and
Shannon [55], of which the first-price auction is a special case. Athey's proof applies
to both discrete and continuous bidding spaces, and in fact the latter is established
through the former, via a limit argument similar in spirit to [45, 51].

To the best of our knowledge, there are only a few prior works on the compu-
tational complexity of equilibria in first-price auctions. Escamocher, Miltersen, and
Santillan R. [22] studied the problem of computing equilibria when both the priors
and the bidding space are discrete. In that case, it is not hard to construct counterex-
amples that show that pure equilibria may not exist, and therefore they are concerned
with the question of deciding their existence. Their results do not provide a conclusive
answer (i.e., neither NP-hardness nor polynomial-time solvability is proven), except
for the very special case of two bidders with bivalued distributions. Wang, Shen, and
Zuo [71] very recently studied the equilibrium computation problem in settings with
discrete priors and continuous bids (in a sense, the opposite of what we do here), and
under the Vickrey tie-breaking rule for deciding the winner of the auction in case of
a tie. According to this rule, ties are resolved by running an auxiliary second-price
(Vickrey) auction among the potential winners of the first-price auction; effectively
this allocates the item to the bidder with highest true valuation. This tie-breaking
rule was introduced by Maskin and Riley [51] primarily as a technical tool in proving
their existence results for the uniform tie-breaking rule, where ties are broken uni-
formly at random among the bidders with the highest bid. Our results are proven
for the uniform tie-breaking rule, which is the standard rule in the literature of the
problem [1, 44, 45, 51].

Finally, we remark that while we consider an equilibrium computation setting, our
results are markedly different from other works on such problems, e.g., [19]. This is
because our paper concerns a much more specific and structured game, and, crucially,
a game which is Bayesian, which is not the case for most prior work. Conceptually
closer to our work is the paper by Cai and Papadimitriou [9] who study the com-
plexity of Bayesian combinatorial auctions, a more complicated auction format which
typically involves multiple items for sale and more complex agent valuations over sub-
sets of items. The complexity of general Bayesian games (beyond auctions) has been
studied in the literature, primarily resulting in NP-hardness results for several cases
of interest; e.g., see [18, 34].

2. Model and notation. In a (Bayesian) first-price auction (FPA), there is a
set N = \{ 1, 2, . . . , n\} of bidders (or players) and one item for sale. Each player i
submits a bid bi \in B, where the bidding space B \subseteq [0, 1] is a finite set. We will also
make the standard assumption (often referred to as the ``null bid"" in the literature)
that 0 \in B, which can be interpreted as the option of the bidders to not participate
in the auction (see, e.g., [1, 51]).

The item is allocated to the player with the highest bid, who is charged a payment
equal to her bid. If there are multiple players submitting the same highest bid, the
winner is determined based on the uniform tie-breaking rule. Formally, for a bid profile
\bfitb = (b1, . . . , bn), the expost utility of player i with true value vi is given by

\~ui(\bfitb ; vi) \equiv 
\Biggl\{ 

1
| W (\bfitb )| (vi  - bi) if i \in W (\bfitb ),

0 otherwise,
where W (\bfitb ) = argmax

j\in N
bj .(2.1)

For each pair of players i, j \in N , i \not = j, there is a continuous value distribution Fi,j

over [0, 1]; we call this distribution the prior of bidder i over the values of bidder j.
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 85

The subjective belief of player i for the values \bfitv  - i = (v1, . . . , vi - 1, vi+1, . . . , vn) of
the other bidders is then given by the product distribution \bfitF  - i \equiv \times j \not =iFi,j . In
other words, from the perspective of bidder i, the values vj for j \not = i are drawn
independently from distributions Fi,j . Notice that the special case where Fi,j = F

i
\prime 
,j

for all j \in N and i, i\prime \in N \setminus \{ j\} corresponds to the classic independent private values
model of auction theory, where the value of each bidder is drawn (independently of the
others) from a single distribution. More formally, simplifying the notation by using
Fj instead of Fi,j , \bfitv is drawn from the common prior distribution \bfitF = \times j\in NFj .
Obviously, while our hardness results rely on the fact that priors are subjective, all of
our positive results trivially extend to the case of common priors as well.

The FPA described above naturally induces a game in which each bidder i selects
her bid based on her own (true) value, vi, and her beliefs, \bfitF  - i. A strategy of bidder
i is a function \beta i : [0, 1] \rightarrow B mapping values to bids. Given a strategy profile \bfitbeta  - i

of the other players, the (interim) utility of player i with true value vi when bidding
b \in B is

ui(b,\bfitbeta  - i; vi) \equiv \BbbE \bfitv  - i\sim \bfitF  - i
[\~ui(b,\bfitbeta  - i(\bfitv  - i); vi)],

where \bfitbeta  - i(\bfitv  - i) is shorthand for (\beta 1(v1), . . . , \beta i - 1(vi - 1), \beta i+1(vi+1), . . . , \beta n(vn)). In-
tuitively, the player calculates her (expected) utility by drawing a value vj for each
bidder j \not = i from her corresponding subjective prior distribution Fi,j , and then using
the strategy ``rules"" \bfitbeta  - i of the others to map their values to actual bids in B.

We are interested in ``stable"" states of the FPA, i.e., strategy profiles from which
no bidder would like to unilaterally deviate to a different strategy. Formally, we have
the following definition.

Definition 2.1 (\varepsilon -Bayes--Nash equilibrium of the FPA). Let \varepsilon \geq 0. A strategy
profile \bfitbeta = (\beta 1, . . . , \beta n) is a (pure, interim) \varepsilon -Bayes--Nash equilibrium ( \varepsilon -BNE) of
the FPA if for any bidder i \in N and any value vi \in [0, 1],

ui(\beta i(vi),\bfitbeta  - i; vi) \geq ui(b,\bfitbeta  - i; vi) - \varepsilon for all b \in B.

Given a fixed strategy profile \bfitbeta  - i of the other bidders, we will denote the set of
\varepsilon -best responses of player i by

BR\varepsilon 
i (\bfitbeta  - i) =

\biggl\{ 
\beta i

\bigm| \bigm| \bigm| \bigm| ui(\beta i(vi),\bfitbeta  - i; vi) \geq max
b\in B

ui(b,\bfitbeta  - i; vi) - \varepsilon for all vi \in [0, 1]

\biggr\} 
.

Using this, the condition in Definition 2.1 can be equivalently written as \beta i \in BR\varepsilon 
i (\bfitbeta  - i)

for all players i. For the special case of \varepsilon = 0, i.e., exact best-responses, we will drop
the \varepsilon superscript.

Notice that, in Definition 2.1 we define a relaxed equilibrium concept, in which
the bidder does not want to change to a different strategy unless it increases her utility
by an additive factor larger than \varepsilon ; obviously, when \varepsilon = 0 we recover the standard
definition of the (exact) Bayes--Nash equilibrium.

No overbidding. As part of our model, we will make the assumption that bidders
will never submit a bid bi which is higher than their valuation vi. This is a standard
assumption in the literature of the first-price auction [22, 47, 51, 52, 71] and auctions
in general [6, 10, 16, 26, 49, 59]. The rationale behind it stems from the fact that,
given the format of the utilities in the FPA (see (2.1)), it is arguably unreasonable
to overbid, as bidding 0 will always result in at least the same utility. In game-
theoretic terms, the overbidding strategy is weakly dominated by bidding 0, which can
be interpreted as abstaining from the auction. These strategies are typically excluded
from consideration to rule out unnatural equilibria (see [26] for a discussion).
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We are now ready to formally define our computational problem of finding an
equilibrium of the FPA:

\bfitvarepsilon -Bayes--Nash Equilibrium in the First-Price Auction (\bfitvarepsilon -BNE-FPA)

Input:

- a set of bidders N = \{ 1, 2, . . . , n\} ;
- a finite bidding space B \subseteq [0, 1];
- for each pair of bidders i, j \in N , a continuous value distribution Fi,j over
[0, 1].

Output: An \varepsilon -Bayes--Nash equilibrium \bfitbeta = (\beta 1, . . . , \beta n).

We will use the term exact-BNE-FPA instead of 0-BNE-FPA to denote the
computational problem of finding an exact Bayes--Nash equilibrium of the auction.
Some remarks related to the definition above are in order.

The input model for the distributions. We have intentionally vaguely stated that
the distributions Fi,j should be provided as input to the problem, but we have not
specified exactly how. Our positive results hold even when the functions Fi,j are fairly
general, and they can be concisely and efficiently represented in a form that is appro-
priate for computation. In the interest of clarity, we omit the technical details here,
and we refer the reader to Appendix A, where we provide all the details of the input
model. For the negative results, on the other hand, we use fairly simple distributions
Fi,j---this only makes our results stronger. In particular, we use piecewise-constant
density functions, which can be represented by the endpoints and the value for each
interval.

Explicit bidding space. We assume that the bidding space is explicitly given as
part of the input. This assumption is required in section 3 in order to show that we can
compute best-responses efficiently. Even in the mildest of settings where the bidding
space is given implicitly, computing best-responses turns out to be computationally
and information-theoretically hard. We show this in Appendix B.

Equilibrium representation. Besides the representation of the input, the output
of our computational problem, i.e., the equilibrium of the FPA, should also be rep-
resented in some concise and efficient way. Following the standard literature of the
problem, we will consider equilibria for which the strategy \beta i(vi) of each bidder is a
nondecreasing function of her value vi (e.g., see [1, 51, 63] and [44, Appendix G]) for
which the existence of an equilibrium is always guaranteed [1]. These equilibria are
in a sense the only ``natural"" ones, as, similar to the case of overbidding (see earlier
discussion), any bidder's strategy is weakly dominated by a nondecreasing strategy.

Based on this, there is a straightforward and computationally efficient way of
representing the best response of each player as a step function with a finite set of
``jump points,"" corresponding to the values at which the bidder ``jumps"" from one bid
to the next [1]. Formally, we define

\alpha i(b) = sup \{ v | \beta i(v) \leq b\} .(2.2)

Intuitively, \alpha i(b) is the largest value for which player i would bid b or lower. With a
slight abuse of notation, we can write \alpha i = \beta  - 1

i , that is, \alpha i can be interpreted as an
inverse bidding strategy. In that way, we can also rework \beta i from \alpha i, as \beta i(v) = b,
where v \in (\alpha i(b

 - ), \alpha i(b)] for any b \in B. Here we let b - denote the previous bid,
i.e., the largest b\prime \in B with b\prime < b. Finally, to be able to handle the corner cases
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v\alpha i(b)\alpha i(b
 - )

\beta i(v)

b

Fig. 1: A monotone bidding strategy \beta i(\cdot ) can be succinctly represented by its jump
points, \alpha i(b) for b \in B.

Irrational Equilibria. As discussed in our introduction, for our PPAD-completeness
result, we will be looking for an \varepsilon -approximate equilibrium, rather than an exact one.
Of course, this only makes our hardness results even stronger; but besides that, it is
actually very much necessary for our membership result in PPAD as well. In par-
ticular, as demonstrated by the example below, the FPA may have only irrational
equilibria, even when all input parameters are rational numbers.

Example 2.2. Consider a FPA with n = 3 bidders and common priors, whose val-
ues are independently and identically distributed according to the uniform distribution
on [0, 1]; that is, Fi(x) = x for i = 1, 2, 3. Let the bidding space be B = \{ 0, 1/2\} .
Clearly, this auction can be represented with piecewise-constant density functions
(with a single piece) and with a finite number of rational quantities. It can be verified
that the auction has a unique equilibrium, where a bidder bids 0 iff her valuation is

below  - 1+
\surd 
5

2 \approx 0.618; therefore, the unique equilibrium is irrational. We provide the
detailed derivation in Appendix C.

The appropriate setting for studying the computation of exact equilibria is the
class FIXP of Etessami and Yannakakis [23]. In Subsection 4.2 and Section 5 we show
that the problem of exact equilibrium computation of the FPA is FIXP-complete.

Further Notation. We conclude the section with the following terminology which
will be useful in multiple sections of our paper. For t1 < t2, we will let T[t1,t2]

denote the truncation of a value x to [t1, t2], i.e., T[t1,t2](x) = max\{ t1,min\{ t2, x\} \} .
Furthermore, for k \in \BbbN we sometimes use [k] to denote \{ 1, 2, . . . , k\} .

2.1. Outline. In Section 3 we provide a useful characterization of BNE and then
show how to compute the best responses in polynomial time. In Section 4, first we
provide a new existence proof via Brouwer's fixed point theorem, and then proceed to
prove the membership of the equilibrium computation problems in PPAD and FIXP.
In Section 5 we show the computational hardness for these classes. In Section 6
we present an efficient algorithm for a natural special case. We conclude with some
interesting future directions in Section 7.

3. Equilibrium characterization and best response computation. In this
section we begin by presenting a useful characterization of \varepsilon -BNE that is crucial for
many parts of the paper. Then, we show how best-responses of bidders can be checked
and computed in polynomial time. We remark that the reductions that we will con-
struct in Section 4 to show the PPAD-membership and the FIXP-membership of the
problem do not technically require the computation of the whole best-response func-

Fig. 1. A monotone bidding strategy \beta i(\cdot ) can be succinctly represented by its jump points, \alpha i(b)
for b \in B.

in a unified way, we set ai(b
 - ) = 0 when b = 0. Notice also that \alpha i(b) = 1 when

b = maxB.
In particular, this implies that bidding strategies are left-continuous (which is

without loss of generality given our value distributions), as shown in Figure 1.
Irrational equilibria. As discussed in our introduction, for our PPAD-completeness

result, we will be looking for an \varepsilon -approximate equilibrium, rather than an exact one.
Of course, this only makes our hardness results even stronger; but besides that, it is
actually very much necessary for our membership result in PPAD as well. In par-
ticular, as demonstrated by the example below, the FPA may have only irrational
equilibria, even when all input parameters are rational numbers.

Example 2.2. Consider an FPA with n = 3 bidders and common priors, whose
values are independently and identically distributed according to the uniform distribu-
tion on [0, 1]; that is, Fi(x) = x for i = 1, 2, 3. Let the bidding space be B = \{ 0, 1/2\} .
Clearly, this auction can be represented with piecewise-constant density functions
(with a single piece) and with a finite number of rational quantities. It can be verified
that the auction has a unique equilibrium, where a bidder bids 0 if and only if her
valuation is below  - 1+

\surd 
5

2 \approx 0.618; therefore, the unique equilibrium is irrational. We
provide the detailed derivation in Appendix C.

The appropriate setting for studying the computation of exact equilibria is the
class FIXP of Etessami and Yannakakis [23]. In sections 4.2 and 5 we show that the
problem of exact equilibrium computation of the FPA is FIXP-complete.

Further notation. We conclude the section with the following terminology which
will be useful in multiple sections of our paper. For t1 < t2, we will let T[t1,t2]

denote the truncation of a value x to [t1, t2], i.e., T[t1,t2](x) = max\{ t1,min\{ t2, x\} \} .
Furthermore, for k \in \BbbN we sometimes use [k] to denote \{ 1, 2, . . . , k\} .

2.1. Outline. In section 3 we provide a useful characterization of BNE and then
show how to compute the best responses in polynomial time. In section 4, first we
provide a new existence proof via Brouwer's fixed point theorem, and then proceed
to prove the membership of the equilibrium computation problems in PPAD and
FIXP. In section 5 we show the computational hardness for these classes. In section
6 we present an efficient algorithm for a natural special case. We conclude with some
interesting future directions in section 7.

3. Equilibrium characterization and best-response computation. In this
section we begin by presenting a useful characterization of \varepsilon -BNE that is crucial for
many parts of the paper. Then we show how best-responses of bidders can be checked
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88 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS

and computed in polynomial time. We remark that the reductions that we will con-
struct in section 4 to show the PPAD-membership and the FIXP-membership of the
problem do not technically require the computation of the whole best-response func-
tion, but rather only the probabilities of winning the item given the bidder's bid and
the bidding strategies of the other bidders. However, the best-response computation
is interesting in its own right, and that is why we present this here.

Characterization. The following lemma essentially states that an \varepsilon -BNE is charac-
terized by the behavior of the bidding function at the jump points. Recall that for any
bid b, we let b - denote the previous bid, and we use the convention \alpha i(b

 - ) = 0 when
b = 0. Notice that \alpha i(b) = 1 when b = maxB. Furthermore, when \alpha i(b

 - ) = \alpha i(b),
the corresponding strategy \beta i does not use bid b, but instead jumps from the previous
bid directly to the following one. We will call all bids where this does not happen---i.e,
we have \alpha i(b

 - ) < \alpha i(b)---nondegenerate for bidder i.

Lemma 3.1 (characterization of \varepsilon -BNE). Fix an \varepsilon \geq 0. A strategy profile \bfitbeta is an
\varepsilon -BNE of the FPA if and only if, for every bidder i and every nondegenerate bid b,

ui(b,\bfitbeta  - i;\alpha i(b
 - )) \geq ui(b

\prime ,\bfitbeta  - i;\alpha i(b
 - )) - \varepsilon for all b\prime < b(3.1)

and

ui(b,\bfitbeta  - i;\alpha i(b)) \geq ui(b
\prime ,\bfitbeta  - i;\alpha i(b)) - \varepsilon for all b\prime > b.(3.2)

The H-functions. Before proving this characterization, we introduce some useful
notation. We use the termHi(b,\bfitbeta  - i) to denote the (perceived) probability that bidder
i wins the item with bid b, when the other bidders use bids according to the bidding
strategy \bfitbeta  - i, i.e.,

Hi(b,\bfitbeta  - i) = Pr
\bigl[ 
bidder i wins| b,\bfitbeta  - i

\bigr] 
.

The utility can easily be expressed in terms of this function, namely, ui(b,\bfitbeta  - i; vi) =
(vi  - b) \cdot Hi(b,\bfitbeta  - i).

Proof of Lemma 3.1. (\Rightarrow ): Fix a bidder i and a bid b with \alpha i(b
 - ) < \alpha i(b). Since

bidder i bids b inside the nonempty interval (\alpha i(b
 - ), \alpha i(b)], and \bfitbeta is an \varepsilon -BNE, we

get that ui(b,\bfitbeta  - i; vi) \geq ui(b
\prime ,\bfitbeta  - i; vi)  - \varepsilon for every vi \in (\alpha i(b

 - ), \alpha i(b)] and b\prime \not = b.
Since the utilities are continuous functions on vi, the inequalities must also hold at
the interval endpoints.

(\Leftarrow ): Suppose (3.1) and (3.2) hold. Take any bidder i and any valuation vi, and
let (\alpha i(b

 - ), \alpha i(b)] be the interval containing vi. Notice that the utilities ui(b,\bfitbeta  - i; vi),
ui(b

\prime ,\bfitbeta  - i; vi) are linear functions on vi, with slopes given by Hi(b,\bfitbeta  - i), Hi(b
\prime ,\bfitbeta  - i),

respectively. For b\prime < b, we know that Hi(b
\prime ,\bfitbeta  - i) \leq Hi(b,\bfitbeta  - i), and ui(b,\bfitbeta  - i; v) \geq 

ui(b
\prime ,\bfitbeta  - i; v) - \varepsilon holds at v = \alpha i(b

 - ); therefore it must hold also at v = vi. Similarly
for b\prime > b, we know that Hi(b

\prime ,\bfitbeta  - i) \geq Hi(b,\bfitbeta  - i), and ui(b,\bfitbeta  - i; v) \geq ui(b
\prime ,\bfitbeta  - i; v) - \varepsilon 

holds at v = \alpha i(b); therefore it must hold also at v = vi. We thus conclude that \bfitbeta is
an \varepsilon -BNE.

We now consider the basic computational problems of checking and computing
best-responses of bidders. We assume throughout that bidding strategies provided in
the input are given via rational quantities corresponding to the jump points \alpha j(b), as
defined in section 2. The first step to be able to check or compute best-responses is
the efficient computation of the H-functions defined above.
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 89

Computation of the H-functions. Recall that Hi(b,\bfitbeta  - i) = Pr[bidder i wins| b,
\bfitbeta  - i]. This probability clearly depends on bidder i's prior on the other bidders' distri-
butions, as well as on whether b is the highest bid, and if it is, how many other highest
bids there are in the auction, in case of a tie. While the form of the functions Hi

can be devised analytically, the expression involves exponentially many terms in the
number of bidders n; therefore it is not obvious that it can be computed efficiently.
The following lemma states that this is in fact possible.

Lemma 3.2. Given a bidder i, a bid b, and bidding strategies \bfitbeta  - i of the other
bidders, the probability Hi(b,\bfitbeta  - i) of bidder i winning the item can be computed in
polynomial time.

Proof. For ease of notation, we present the proof for bidder i = n. The cases for
the other bidders are analogous and can be handled, e.g., via an appropriate relabeling.
The probability that bidder n wins (given her bid and the bidding strategies of the
other bidders) can be written as

Hn(b,\bfitbeta  - n) =

n - 1\sum 

k=0

1

k + 1
T (b, n - 1, k),(3.3)

where, for 0 \leq k \leq \ell \leq n - 1, we use T (b, \ell , k) to denote the probability that exactly
k out of the first \ell bidders bid exactly b, and the remaining \ell  - k bidders all bid
below b; in other words, for the special case where \ell = n - 1 in the above expression,
T (b, n - 1, k) is the probability of the highest bid being b, with k+1 bidders (including
bidder n) being tied for the highest bid. Next, for a given bidder j, let

Gj,b - = Fn,j(\alpha j(b
 - )) = Pr [\beta j(vj) < b], gj,b = Fn,j(\alpha j(b)) - Gjb - = Pr [\beta j(vj) = b]

denote the (perceived from the perspective of bidder n) probabilities that bidder j bids
below b, and bids exactly b, respectively. Note that Gj,b - and gj,b can be efficiently
computed with access to Fn,j and \bfitalpha  - n. Moreover, one could write

T (b, n - 1, k) =
\sum 

S\subseteq [n - 1]
| S| =k

\prod 

j\in S

gj,b \cdot 
\prod 

j \not \in S

Gj,b - .(3.4)

Notice that (3.4) does not yield an efficient way of computing the probabilities,
as the number of summands can be exponential in n. To bypass this obstacle, we
observe that, more generally, the probabilities T (b, \ell , k) can be computed from G\ell ,b - 

and g\ell ,b via dynamic programming, by conditioning on bidder \ell 's bid, in the following
way:

T (b, 0, 0) = 1;

T (b, \ell , k) = 0 for k > \ell ;

T (b, \ell + 1, 0) = T (b, \ell , 0)G\ell +1,b - ;

T (b, \ell + 1, k + 1) = T (b, \ell , k)g\ell +1,b + T (b, \ell , k + 1)G\ell +1,b - for k \leq \ell .

Thus, all values of T (b, n  - 1, k), for k = 0, . . . , n  - 1, can be computed with a total
number of O(n2) recursive calls, so that Hn(b,\bfitbeta  - n) can be computed in polynomial
time.

Lemma 3.2 implies that the utilities in (3.1) and (3.2) of the characterization
(Lemma 3.1) can be computed in polynomial time. Since there are O(n| B| 2) inequal-
ities to check in Lemma 3.1, we immediately conclude the following.
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90 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS

Corollary 3.3. Given \varepsilon \geq 0 and a strategy profile \bfitbeta in an FPA with subjective
priors, one can determine in polynomial time whether \bfitbeta constitutes an \varepsilon -BNE.

Using Lemma 3.2, we can now also efficiently compute best-responses, and, in
fact, even exact best-responses (i.e., \varepsilon -best-responses for \varepsilon = 0).

Theorem 3.4. In an FPA with subjective priors, the bidders' best-responses can
be computed in polynomial time.

Proof. Given a bidder i and the vector of bidding strategies \bfitbeta  - i, one can compute
in polynomial time the probabilities Hi(b,\bfitbeta  - i) for each bid b \in B using Lemma 3.2.
Now recall that the utility of bidder i, when having a valuation of vi and bidding b, is
given by ui(b,\bfitbeta  - i; vi) = (vi  - b) \cdot Hi(b,\bfitbeta  - i), which is a linear function on vi having
slope Hi(b,\bfitbeta  - i). Thus, maximizing the utility amounts to taking the maximum (or
upper envelope) of | B| linear functions; the result is a piecewise linear function whose
jump points can be efficiently computed by solving linear equations. In particular,
given bids b < b\prime , we can compute \alpha = \~\alpha i(b, b

\prime ) as the solution of ui(b,\bfitbeta  - i;\alpha ) =
ui(b

\prime ,\bfitbeta  - i;\alpha ), that is,

\~\alpha i(b, b
\prime ) =

\left\{ 
 
 

b
\prime 
Hi(b

\prime 
,\bfitbeta  - i) - bHi(b,\bfitbeta  - i)

Hi(b
\prime 
,\bfitbeta  - i) - Hi(b,\bfitbeta  - i)

if Hi(b
\prime ,\bfitbeta  - i) \not = Hi(b,\bfitbeta  - i),

+\infty otherwise.

Intuitively, \~\alpha i(b, b
\prime ) is the jump point corresponding to bidding b versus bidding b\prime :

bidder i achieves higher utility by bidding b if and only if vi < \~\alpha i(b, b
\prime ). Now the

highest value for which bidder i (weakly) prefers bidding b versus any other higher
bid is min

b
\prime 
>b

\~\alpha i(b, b
\prime ); if at this valuation bidding b also achieves higher utility than

bidding any other lower bid, then min
b
\prime 
>b

\~\alpha i(b, b
\prime ) is indeed one of the desired jump

points. Otherwise, b is a degenerate bid, in the sense that there is no valuation for
which b is an optimal response. Therefore, the jump points introduced in (2.2) are
given by \alpha i(b) = max

b
\prime \leq b

min
b
\prime \prime 
>b

\prime \~\alpha i(b
\prime , b\prime \prime ).5 Clearly, then, the \alpha i(b) can be found

in polynomial time.

4. Existence and membership in PPAD and FIXP. The existence of equi-
libria in our setting can essentially be established by adapting a proof by Athey [1],
which relies on Kakutani's fixed point theorem. Unfortunately, proofs that are based
on this fixed point theorem cannot easily be turned into membership results for com-
putational classes such as PPAD and FIXP. This is especially true for FIXP, which is
essentially defined as the class of all problems that can be solved by finding a Brouwer
fixed point. In order to circumvent this obstacle we present a new proof that uses
Brouwer's fixed point theorem. In this section, we first present this proof and then
utilize it to prove membership of our problems of interest in PPAD and FIXP.

4.1. Existence of equilibria via Brouwer's fixed point theorem.

Theorem 4.1. Every FPA with continuous subjective priors and finite bidding
space admits a monotone nondecreasing and nonoverbidding pure BNE.

Proof. Let N = \{ 1, 2, . . . , n\} be the set of bidders, let Fi,j be the continuous
subjective priors, and let 0 = b0, b1, . . . , bm be the ordered list of bids, i.e., the elements
of B \subseteq [0, 1]. Recall that a monotone nondecreasing strategy \beta i : [0, 1] \rightarrow B can be
represented by its jump points \alpha i(b). Let

5The maximization over b\prime \leq b serves to exclude degenerate cases, e.g., if b\prime < b < b\prime \prime but
\~\alpha i(b, b

\prime \prime ) < \~\alpha i(b
\prime , b\prime \prime ) < \~\alpha i(b, b

\prime ).
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 91

\scrD =
\Bigl\{ 
\bfitalpha = (\alpha 1, \alpha 2, . . . , \alpha n) \in ([0, 1]m)n

\bigm| \bigm| \bigm| 

\forall i \in N, j \in [m] : \alpha i(bj - 2) \leq \alpha i(bj - 1) \wedge bj \leq \alpha i(bj - 1)
\Bigr\} 
,

where we use the convention \alpha i(b - 1) := 0 to keep the notation simple. The domain \scrD 
is the set of all monotone nondecreasing nonoverbidding strategy profiles, represented
by their jump points. Note that \scrD is compact and convex.

In what follows we slightly abuse notation by replacing the strategy profile \bfitbeta 
by its representation \bfitalpha in some terms. Recall the functions Hi(b,\bfitalpha  - i) defined in
section 3, which represent the probability that bidder i wins the auction if they bid b.
By inspecting the proof of Lemma 3.2, it is easy to see that the quantities Gjb - and
gjb are continuous with respect to \bfitalpha  - i, since the distributions are continuous. As a
result, the terms T (b, n  - 1, j) are also continuous in \bfitalpha  - i (by (3.4)), which implies
that Hi(b,\bfitbeta  - i) is also continuous in \bfitalpha  - i. Since the utility functions can be written
as ui(b,\bfitalpha  - i; vi) = (vi  - b) \cdot Hi(b,\bfitalpha  - i), it follows that the functions (\bfitalpha  - i, vi) \mapsto \rightarrow 
ui(b,\bfitalpha  - i; vi) are continuous.

We now construct a function G : \scrD \rightarrow \scrD . For any bidder i \in N and any j \in [m],
define the continuous function \Delta i

j : \scrD \rightarrow \BbbR by

\Delta i
j(\bfitalpha ) = ui(bj - 1,\bfitalpha  - i;\alpha i(bj - 1)) - max

\ell \geq j
ui(b\ell ,\bfitalpha  - i;\alpha i(bj - 1)).

The intuition behind the construction of \Delta i
j(\bfitalpha ) is as follows. We consider the point

\alpha i(bj - 1) (the last point where bidder i currently bids bj - 1) and compare how beneficial
it is for bidder i to bid bj - 1 at this point, compared to using a larger bid. The sign
of \Delta i

j(\bfitalpha ) essentially encodes the result of this comparison. As a result, it encodes
whether bidder i (a) is happy with the current value of \alpha i(bj - 1) (i.e., \Delta i

j(\bfitalpha ) = 0),
(b) would like to increase \alpha i(bj - 1) (i.e., \Delta i

j(\bfitalpha ) > 0), or (c) would like to decrease
\alpha i(bj - 1) (i.e., \Delta 

i
j(\bfitalpha ) < 0).

Now, for any \bfitalpha \in \scrD , let G(\bfitalpha ) = \bfitalpha \prime , where for all i \in N and j = 1, 2, . . . ,m
(consecutively and in that order)

\alpha \prime 
i(bj - 1) = T

[max\{ bj ,\alpha \prime i(bj - 2)\} ,1](\alpha i(bj - 1) + \Delta i
j(\bfitalpha )).(4.1)

Note in particular that this is well-defined, since \alpha \prime 
i(bj - 2) is defined before \alpha \prime 

i(bj - 1).
The truncation operator immediately ensures that \bfitalpha \prime \in \scrD . Since G is also clearly
continuous, and \scrD is compact and convex, it follows by Brouwer's fixed point theorem
that there exists an \bfitalpha \in \scrD with G(\bfitalpha ) = \bfitalpha . It remains to prove that \bfitalpha corresponds
to an equilibrium of the auction.

Consider some bidder i \in N . We will show that \alpha i is a best-response to \bfitalpha  - i using
the characterization of Lemma 3.1. Consider any nonempty interval of nonempty
interior [\alpha i(bj - 1), \alpha i(bj)], for some j \in \{ 0, 1, . . . ,m\} , where we use the convention
that \alpha i(b - 1) = 0, and recall that \alpha i(bm) = 1.

\bullet First, we show that ui(bj ,\bfitalpha  - i;\alpha i(bj)) \geq max\ell >j ui(b\ell ,\bfitalpha  - i;\alpha i(bj)). Clearly,
for j = m this holds trivially. For j < m, this can immediately be rephrased
as showing \Delta i

j+1(\bfitalpha ) \geq 0. Now, note that by assumption we have \alpha i(bj) >
\alpha i(bj - 1). Thus, since \alpha i(bj) remains fixed under G, it must be that \alpha i(bj) =
bj+1 or \Delta i

j+1(\bfitalpha ) \geq 0. However, if \alpha i(bj) = bj+1, then it also trivially holds
that \Delta i

j+1(\bfitalpha ) \geq 0.
\bullet Next, we show that ui(bj ,\bfitalpha  - i;\alpha i(bj - 1)) \geq max\ell <j ui(b\ell ,\bfitalpha  - i;\alpha i(bj - 1)).

Again, this holds trivially for j = 0, so we now consider j > 0. By the
first bullet point above, it holds that
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ui(bj ,\bfitalpha  - i;\alpha i(bj)) = max
\ell \geq j

ui(b\ell ,\bfitalpha  - i;\alpha i(bj)).

By the monotonicity of the H-functions, we can simply replace \alpha i(bj) by
\alpha i(bj - 1) in the equation above. Indeed, since by definition of the H-functions
we have that Hi(b,\bfitalpha  - i) \leq Hi(b

\prime ,\bfitalpha  - i) for any two bids b \leq b\prime , it follows in
particular that the function v \mapsto \rightarrow ui(b,\bfitalpha  - i; v) - ui(b

\prime ,\bfitalpha  - i; v) is monotonically
nonincreasing. To see this, it suffices to write the utilities in terms of the H-
functions, i.e., ui(b,\bfitalpha  - i; v) = (v  - b) \cdot Hi(b,\bfitalpha  - i), and similarly for b\prime . As a
result, we obtain that

ui(bj ,\bfitalpha  - i;\alpha i(bj - 1)) = max
\ell \geq j

ui(b\ell ,\bfitalpha  - i;\alpha i(bj - 1)).

On the other hand, since \alpha i(bj - 1) < \alpha i(bj), it follows in particular that
\alpha i(bk) < 1 for all k < j. As a result, since \alpha i(bk) remains fixed under G, it
must be that \Delta i

k+1(\bfitalpha ) \leq 0 for all k < j, i.e.,

ui(bk,\bfitalpha  - i;\alpha i(bk)) \leq max
\ell \geq k+1

ui(b\ell ,\bfitalpha  - i;\alpha i(bk)),

which by monotonicity of the H-functions, as explained above, continues to
hold if we replace \alpha i(bk) by \alpha i(bj - 1), i.e., for all k < j we have

ui(bk,\bfitalpha  - i;\alpha i(bj - 1)) \leq max
\ell \geq k+1

ui(b\ell ,\bfitalpha  - i;\alpha i(bj - 1)).

As a result it follows by induction that for all k < j

ui(bk,\bfitalpha  - i;\alpha i(bj - 1)) \leq max
\ell \geq j

ui(b\ell ,\bfitalpha  - i;\alpha i(bj - 1)) = ui(bj ,\bfitalpha  - i;\alpha i(bj - 1)).

By Lemma 3.1, it immediately follows that \alpha i is a best-response to \bfitalpha  - i. Since
this holds for all bidders i \in N , \bfitalpha is an equilibrium.

4.2. FIXP membership. In order to study the exact equilibrium problem for
the FPA in the context of FIXP, we consider the model where the distributions Fi,j

are given by algebraic circuits using the operations \{ +,  - , \times , /, max, min, k
\surd \cdot \} and

rational constants, as is usual in this setting [23]. We show that the proof of existence
in the previous section can be turned into a reduction.

Theorem 4.2. The problem exact-BNE-FPA lies in FIXP.

Proof. Clearly, the domain \scrD of the function G : \scrD \rightarrow \scrD from the proof of
Theorem 4.1 can be represented by a set of linear inequalities that can be constructed
in polynomial time in n, m, and the representation length of B. Thus, it remains to
show that we can construct in polynomial time an algebraic circuit that computes G.

We now describe how to construct a circuit for G that only uses operations
\{ +,  - , \times , /, max, min, k

\surd \cdot \} and rational constants. First of all, note that prob-
abilities of the form Prvj\sim Fi,j

[\beta j(vj) \leq b] = Fi,j(\alpha j(b)) can easily be computed by the
circuit, since the (cumulative) distribution functions Fi,j are provided as algebraic
circuits, and \bfitalpha is the input to the circuit. It follows that the quantities Gjb - and gjb
defined in the proof of Lemma 3.2 can also be computed by the circuit. As a result,
we can use the dynamic programming procedure described in the proof of Lemma 3.2
to compute the terms T (b, n - 1, j) by only using a polynomial number of operations.
Note in particular that the dynamic programming assignment rules can all be imple-
mented using the available set of operations. With the terms T (b, n  - 1, j) in hand,
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 93

we can then easily compute the terms Hi(b,\bfitalpha  - i) for all b \in B, and thus evaluate the
utility function ui(b,\bfitalpha  - i; vi) = (vi  - b) \cdot Hi(b,\bfitalpha  - i) at any given vi \in [0, 1]. Finally,
using the utility functions and the max operation, we can now compute the terms
\Delta i

j(\bfitalpha ) from the proof of Theorem 4.1, and then, using +, max, min, and the constant
1, we can output \bfitalpha \prime = G(\bfitalpha ) by noting that

\alpha \prime 
i(bj - 1) = max\{ max\{ bj , \alpha \prime 

i(bj - 2)\} ,min\{ 1, \alpha i(bj - 1) + \Delta i
j(\bfitalpha )\} \} .

4.3. PPAD membership. In order to study the approximate equilibrium prob-
lem for the FPA in the context of PPAD, we consider a model where the distributions
Fi,j are polynomially computable, i.e., can be evaluated in polynomial time by a Turing
machine.6 In order to guarantee that an approximate equilibrium with polynomial bit
complexity exists, we also assume that the distributions are polynomially continuous.
For a formal definition of these two standard properties in the context of PPAD, see
Appendix A. In this section we show that in this model, the problem of computing
an \varepsilon -BNE lies in the class PPAD. We begin by observing that the polynomial con-
tinuity of the distribution functions Fi,j implies that the utility functions are also
polynomially continuous. This is proved in Appendix D.

Lemma 4.3. If the distributions Fi,j are polynomially continuous, then so are the
utility functions \bfitalpha \mapsto \rightarrow ui(b,\bfitalpha  - i; vi). In more detail, given \varepsilon > 0, we can in polynomial
time compute \delta > 0 such that for all i \in N , b \in B, and vi \in [0, 1]

\| \bfitalpha  - \bfitalpha \prime \| \infty \leq \delta =\Rightarrow | ui(b,\bfitalpha  - i; vi) - ui(b,\bfitalpha 
\prime  - i; vi)| \leq \varepsilon .

In particular, \delta can be represented using a polynomial number of bits.

We are now ready to state the main result of this section.

Theorem 4.4. The problem \varepsilon -BNE-FPA lies in PPAD.

Proof. We show that the existence proof of Theorem 4.1 can be turned into a
polynomial-time many-one reduction to the problem of computing an approximate
Brouwer fixed point of a polynomially computable and polynomially continuous func-
tion over a bounded polytope given by linear inequalities, known to lie in PPAD [23,
Proposition 2].

Since the distributions Fi,j are polynomially computable, and by the arguments
provided in the proof of Theorem 4.2 (including the dynamic programming procedure
from Lemma 3.2), it immediately follows that G is polynomially computable. The
polynomial continuity of G also immediately follows from the polynomial continuity
of the utility functions (Lemma 4.3). Thus, the problem of computing an approximate
fixed point of G lies in PPAD.

Given \varepsilon > 0, by Lemma 4.3 we can compute \delta > 0 so that for all i \in N , b \in B,
and vi \in [0, 1]

\| \bfitalpha  - \bfitalpha \prime \| \infty \leq \delta =\Rightarrow | ui(b,\bfitalpha  - i; vi) - ui(b,\bfitalpha 
\prime  - i; vi)| \leq 

\varepsilon 

16m
.

6Note that a function represented as an algebraic circuit (as in the previous section on FIXP)
is not necessarily polynomially computable, e.g., because the circuit can use ``repeated squaring""
to construct numbers with exponential bit complexity. Conversely, a function that is polynomially
computable cannot necessarily be represented as an algebraic circuit, because a Turing machine is
not restricted to using arithmetic gates. We note that these two different models for representing
functions are standard for FIXP and PPAD, respectively.
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94 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS

Now consider any \delta -approximate fixed point of G, i.e., \bfitalpha \in \scrD such that \| G(\bfitalpha ) - 
\bfitalpha \| \infty \leq \delta . Let \bfitalpha \prime = G(\bfitalpha ). We prove that \bfitalpha \prime is an \varepsilon -approximate equilibrium of the
FPA. This shows that \varepsilon -BNE-FPA reduces to the Brouwer fixed point computation
problem, and thus lies in PPAD.

Since \bfitalpha \prime = G(\bfitalpha ) and \| G(\bfitalpha ) - \bfitalpha \| \infty \leq \delta , it holds that \| \bfitalpha  - \bfitalpha \prime \| \infty \leq \delta and thus

| ui(b,\bfitalpha  - i; vi) - ui(b,\bfitalpha 
\prime  - i; vi)| \leq 

\varepsilon 

16m
(4.2)

for all i \in N , b \in B, and vi \in [0, 1]. In particular, we also have that | \Delta i
j(\bfitalpha ) - \Delta i

j(\bfitalpha 
\prime )| \leq 

2(\varepsilon /16m+ \delta ) \leq \varepsilon /4m (since the utility functions are also 1-Lipschitz with respect to
vi). Note that here we assumed without loss of generality that \delta \leq \varepsilon /16m.

Fix some bidder i \in N . Consider any nonempty interval [\alpha \prime 
i(bj - 1), \alpha 

\prime 
i(bj)] for

some j \in \{ 0, 1, . . . ,m\} , where we use the convention that \alpha \prime 
i(b - 1) = 0, and recall that

\alpha \prime 
i(bm) = 1.

\bullet First, we show that ui(bj ,\bfitalpha 
\prime  - i;\alpha 

\prime 
i(bj)) \geq max\ell >j ui(b\ell ,\bfitalpha 

\prime  - i;\alpha 
\prime 
i(bj))  - \varepsilon /2.

Clearly, for j = m this holds trivially. For j < m, this can immediately be
rephrased as showing \Delta i

j+1(\bfitalpha 
\prime ) \geq  - \varepsilon /2. By (4.2), it suffices to show that

\Delta i
j+1(\bfitalpha ) \geq  - \varepsilon /2 + \varepsilon /4m. But if \Delta i

j+1(\bfitalpha ) <  - \varepsilon /2 + \varepsilon /4m \leq  - \varepsilon /16m \leq 
 - \delta , then by construction of G, since | \alpha i(bj)  - \alpha \prime 

i(bj)| \leq \delta , it must be that
\alpha \prime 
i(bj) = bj+1 or \alpha \prime 

i(bj) = \alpha \prime 
i(bj - 1). In the former case, it trivially holds that

\Delta i
j+1(\bfitalpha 

\prime ) \geq 0 \geq  - \varepsilon /2. The latter case is impossible, since we assumed that
\alpha \prime 
i(bj - 1) < \alpha \prime 

i(bj).
\bullet Next, we show that ui(bj ,\bfitalpha 

\prime  - i;\alpha 
\prime 
i(bj - 1)) \geq max\ell <j ui(b\ell ,\bfitalpha 

\prime  - i;\alpha 
\prime 
i(bj - 1))  - \varepsilon .

Again, this holds trivially for j = 0, so we now consider j > 0. By the first
bullet point above, it holds that

ui(bj ,\bfitalpha 
\prime  - i;\alpha 

\prime 
i(bj)) \geq max

\ell \geq j
ui(b\ell ,\bfitalpha 

\prime  - i;\alpha 
\prime 
i(bj)) - \varepsilon /2.

As a result, by the monotonicity of the H-functions, as explained in the proof
of Theorem 4.1, this continues to hold if we replace \alpha \prime 

i(bj) by \alpha \prime 
i(bj - 1), i.e.,

ui(bj ,\bfitalpha 
\prime  - i;\alpha 

\prime 
i(bj - 1)) \geq max

\ell \geq j
ui(b\ell ,\bfitalpha 

\prime  - i;\alpha 
\prime 
i(bj - 1)) - \varepsilon /2.(4.3)

On the other hand, since \alpha \prime 
i(bj - 1) < \alpha \prime 

i(bj), it follows in particular that
\alpha \prime 
i(bk) < 1 for all k < j. As a result, by construction of G, and since

| \alpha i(bk) - \alpha \prime 
i(bk)| \leq \delta , it must be that \Delta i

k+1(\bfitalpha ) \leq \delta for all k < j. By (4.2) it
follows that \Delta i

k+1(\bfitalpha 
\prime ) \leq \delta + \varepsilon /4m \leq \varepsilon /2m for all k < j, which yields

ui(bk,\bfitalpha 
\prime  - i;\alpha 

\prime 
i(bk)) \leq max

\ell \geq k+1
ui(b\ell ,\bfitalpha 

\prime  - i;\alpha 
\prime 
i(bk)) +

\varepsilon 

2m
,

which by monotonicity of the H-functions, as explained in the proof of The-
orem 4.1, continues to hold if we replace \alpha \prime 

i(bk) by \alpha \prime 
i(bj - 1), i.e., for all k < j

we have

ui(bk,\bfitalpha 
\prime  - i;\alpha 

\prime 
i(bj - 1)) \leq max

\ell \geq k+1
ui(b\ell ,\bfitalpha 

\prime  - i;\alpha 
\prime 
i(bj - 1)) +

\varepsilon 

2m
.

As a result it follows by induction that for all k < j

ui(bk,\bfitalpha 
\prime  - i;\alpha 

\prime 
i(bj - 1)) \leq max

\ell \geq j
ui(b\ell ,\bfitalpha 

\prime  - i;\alpha 
\prime 
i(bj - 1)) + (j  - k)

\varepsilon 

2m
,

which together with (4.3) yields that for all k < j

ui(bk,\bfitalpha 
\prime  - i;\alpha 

\prime 
i(bj - 1)) \leq ui(bj ,\bfitalpha 

\prime  - i;\alpha 
\prime 
i(bj - 1)) +m

\varepsilon 

2m
+

\varepsilon 

2
.
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 95

By Lemma 3.1, it immediately follows that \alpha \prime 
i is an \varepsilon -best-response to \bfitalpha \prime  - i. Since

this holds for all bidders i \in N , \bfitalpha \prime is an \varepsilon -equilibrium.

5. Computational hardness. In this section we prove computational hardness
results for the problem of computing an equilibrium of a first-price auction with
subjective priors. Namely, we show that computing an \varepsilon -BNE is PPAD-hard, while
computing an exact BNE is FIXP-hard. Our computational hardness results are
particularly robust, because they hold even if we apply all of the following restrictions:

\bullet the bidding space is B = \{ 0, 1/5, 2/5, 3/5, 4/5\} ;
\bullet the value distributions Fi,j are given by very simple piecewise constant density

functions;
\bullet \varepsilon is some sufficiently small constant (only relevant for \varepsilon -BNE).

In particular, by a simple rescaling argument, the hardness results also hold when
the bidding space consists of all monetary amounts that are increments of some fixed
denomination (e.g., one cent) up to some number m.7 For example, there exists a
sufficiently small constant \varepsilon such that it is PPAD-hard to compute an \varepsilon -BNE when
the bidding space is B = \{ 0, 1/100, 2/100, . . . , 99/100, 1, 101/100, . . . ,m - 1/100,m\} .

Together with the corresponding membership results proved in the previous sec-
tion (Theorems 4.2 and 4.4), we thus obtain the following two theorems, which are
the main results of this paper.

Theorem 5.1. There exists a constant \varepsilon > 0 such that the problem \varepsilon -BNE-FPA
is PPAD-complete.

Theorem 5.2. The problem exact-BNE-FPA is FIXP-complete.

In the rest of this section, we present the proof of our hardness results. A nice
feature of our proof is that we provide a single reduction to prove both PPAD- and
FIXP-hardness. In more detail, we reduce from the so-called Generalized Circuit
Problem, which has been instrumental for proving PPAD-hardness results for Nash
equilibrium computation problems [12, 19, 67]. In fact, we show that it suffices to
consider significantly restricted versions of the Generalized Circuit Problem when
proving hardness results, and that an exact version of the problem can also be used
to prove FIXP-hardness. Since we believe that these points may be of independent
interest for future works, they are presented separately in section 5.1. Our reduc-
tion from this problem to equilibrium computation in FPAs is then presented in
section 5.2.

5.1. The Generalized Circuit Problem. Generalized circuits, defined by
Chen, Deng, and Teng [12], can be viewed as a generalization of arithmetic circuits
where we also allow cycles. This means that instead of representing a function, a
generalized circuit represents a certain kind of constraint satisfaction problem. In-
deed, the goal in the Generalized Circuit Problem is to assign a value to each gate of
the circuit such that all the gates are (approximately) satisfied. Importantly, gates
are only allowed to take values in [0, 1] and arithmetic operations are truncated ac-
cordingly. As a result, it can be shown that by Brouwer's fixed point theorem, there
always exists an assignment of values that satisfies all the gates. However, computing
even an approximate assignment is already PPAD-hard, i.e., essentially as hard as
any Brouwer fixed point computation. We now provide some formal definitions.

7Note that m should be provided in the input in unary representation. This is necessary to ensure
that the bidding space has polynomial size, thus allowing efficient computation of best-responses.
See the discussion in section 2 regarding our assumption of an explicit bidding space.
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Definition 5.3. A generalized circuit8 with gate types \scrG is a list of gates g1, g2,
. . . , gm. Every gate gi is a 3-tuple gi = (G, j, k), where G \in \scrG is the type of the gate,
and j, k \in [m] = \{ 1, . . . ,m\} are the indices of the input gates gj , gk ( i, j, k distinct).

Before describing possible types of gates, we introduce some notation. Let T =
T[0,1]. Furthermore, we use the notation x = y \pm \varepsilon to denote that | x - y| \leq \varepsilon .

Consider a generalized circuit g1, g2, . . . , gm and an assignment v : [m] \rightarrow [0, 1]
of values to its gates. We say that a gate is \varepsilon -satisfied by the assignment if the
constraint imposed by this gate is satisfied with error at most \varepsilon . The constraint that
a gate gi = (G, j, k) must satisfy depends on its gate type G \in \scrG , e.g.,

\bullet if G = G1, then v[gi] = 1\pm \varepsilon (constant 1);
\bullet if G = G+, then v[gi] = T(v[gj ]+v[gk])\pm \varepsilon (addition);
\bullet if G = G - , then v[gi] = T(v[gj ] - v[gk])\pm \varepsilon (subtraction);
\bullet if G = G1 - , then v[gi] = 1 - v[gj ]\pm \varepsilon (complement);
\bullet if G = G\times 2, then v[gi] = T(2 \cdot v[gj ])\pm \varepsilon (multiplication by 2);
\bullet if G = G\times , then v[gi] = v[gj ]\cdot v[gk]\pm \varepsilon (multiplication);
\bullet ifG = G(\cdot )2 , then v[gi] = (v[gj ])

2\pm \varepsilon (square).
We are now ready to define the associated computational problem.

Definition 5.4. Let \varepsilon > 0. The problem \varepsilon -Gcircuit with gate types \scrG is
defined as follows: given a generalized circuit g1, g2, . . . , gm with gate types \scrG , find an
assignment v : [m] \rightarrow [0, 1] to the gates such that they are all \varepsilon -satisfied.

Rubinstein [67] proved that this problem is PPAD-complete for some sufficiently
small constant \varepsilon > 0 and a relatively large set of gate types \scrG . In section E.1, we
prove that the problem remains hard, even with a very restricted set of gate types.

Proposition 5.5. There exists a constant \varepsilon > 0 such that the problem \varepsilon -
Gcircuit with gate types \scrG = \{ G+, G1 - \} is PPAD-complete. This continues to
hold if we instead take \scrG = \{ G1, G - \} .

We can also define a problem exact-Gcircuit, where the goal is to find an
assignment that exactly satisfies all constraints (i.e., with \varepsilon = 0). In section E.2, we
prove the following result.

Proposition 5.6. The problem exact-Gcircuit with gate types \scrG = \{ G1 - ,
G+, G(\cdot )2\} is FIXP-complete. This continues to hold if we instead take \scrG = \{ G1 - ,
G\times 2, G\times \} .

5.2. Reduction to BNE-FPA. In this section, we present a reduction that
achieves the following: given a generalized circuit, it constructs (in polynomial time)
an instance of the FPA problem, such that for all \varepsilon \in [0, 1/105], from any \varepsilon -BNE we
can extract a 500\varepsilon -satisfying assignment for the generalized circuit. Furthermore, this
``extraction"" of the assignment from an \varepsilon -BNE can be done efficiently and, in fact,
using a simple so-called separable linear transformation. This ensures that in the case
\varepsilon = 0, we obtain a so-called SL-reduction from exact-Gcircuit, which yields the
FIXP-hardness result [23]. If we let \~\varepsilon > 0 be a constant such that \~\varepsilon -Gcircuit is
PPAD-hard, then for \varepsilon = min\{ 1/105, \~\varepsilon /500\} the reduction is a valid polynomial-time
many-one reduction, which yields the PPAD-hardness result.

8Note that in the usual definition of generalized circuits, every gate also contains a rational
parameter \zeta \in [0, 1], which is used by some gate types, e.g., a gate performing multiplication by the
constant \zeta . In our definition, gates do not contain this rational parameter, because, as we show in
Propositions 5.5 and 5.6, these gate types are actually not needed for the problems to be hard.
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 97

An obstacle to obtaining the desired reduction is that it is unclear how to simulate
a G+-gate or a G\times -gate. As a result, we reduce from the Gcircuit problem with gate
types \scrG = \{ G\times 2, G1 - , G\phi \} , where \phi : [0, 1]2 \rightarrow [0, 1], (x, y) \mapsto \rightarrow 1

4 (x + 1)(y + 1). This
means that a gate gi = (G\phi , j, k) enforces the constraint v[gi] = \phi (v[gj ],v[gk])\pm \varepsilon . In
section E.3 we prove that this set of gate types is sufficient for our desired hardness
results.

Lemma 5.7. Let \scrG = \{ G\times 2, G1 - , G\phi \} . There exists a constant \~\varepsilon > 0 such that
the problem \~\varepsilon -Gcircuit with gate types \scrG is PPAD-complete. Furthermore, exact-
Gcircuit with gate types \scrG is FIXP-complete.

The reduction. We begin with a high-level description of the reduction. Con-
sider a generalized circuit g1, g2, . . . , gm with gate types \scrG = \{ G\times 2, G1 - , G\phi \} . We
construct an FPA with bidding space B = \{ 0, 1/5, 2/5, 3/5, 4/5\} and a set of bidders
N = \{ 1, 2, . . . , n\} , where n = 10m. For every i \in [m], bidder i will ``correspond"" to
gate gi in the sense that, in any \varepsilon -BNE \bfitbeta , the position of the second jump point of \beta i,
i.e., \alpha i(1/5), will encode the value v[gi] that we will assign to gate gi. Thus, we will
refer to the bidders 1, 2, . . . ,m as gate-bidders. The rest of the bidders will be used
as intermediate steps to enforce the desired constraints on the strategies of the gate-
bidders. Accordingly, we will refer to them as auxiliary-bidders. Note that for every
gate-bidder, there are 9 auxiliary-bidders available (if needed). For convenience, we
describe the construction with the value space [0, 5] instead of [0, 1]. This is without
consequence, since this rescaling of the instance simply means that we have to replace
\varepsilon by 5\varepsilon at the end. Note that as a result of the re-scaling, the bidding space is now
simply B = \{ 0, 1, 2, 3, 4\} .

Valid strategies and encoded value. Let \bfitbeta be any \varepsilon -BNE of the auction.
A bidder i \in N is said to be valid if \alpha i(0) \in [1, 1 + 1/2], \alpha i(1) \in [2 + 1/3  - 2\varepsilon , 2 +
2/3 + 2\varepsilon ], \alpha i(2) \in [3 + 1/2, 5], and \alpha i(3) = 5. The bidder i is almost-valid if the
condition on \alpha i(1) is relaxed to \alpha i(1) \in [2, 3]. For every bidder i \in N , we define the
value encoded by bidder i according to \bfitbeta , as

v\bfitbeta [i] =

\biggl\{ 
T[0,1](3(\alpha i(1) - 2 - 1/3)) if i is valid,
null otherwise.

Note that we always have v\bfitbeta [i] \in [0, 1] \cup \{ null\} . In the rest of the proof, we drop
the subscript \bfitbeta , since it is understood from the context. Our construction will ensure
that for all i \in [m], bidder i is valid and as a result v[i] \in [0, 1]. Furthermore, letting
v[gi] := v[i] will yield a 100\varepsilon -satisfying assignment of the generalized circuit.

Gadgets. The rest of the proof describes the construction of the distribution
functions Fi,j . We begin by constructing some unary gadgets. A unary gadget has a
single ``input"" bidder j \in N and an output bidder i \in N \setminus \{ j\} . The goal of such a
gadget is to establish a constraint on \beta i that depends on \beta j , but not on the strategy
of any other bidder. This is achieved by setting Fi,k for all k \in N \setminus \{ i, j\} , such that
its (piecewise constant) density function has a single piece of volume 1 lying in [0, 1].
As a result, because of the nonoverbidding assumption, bidder i will believe that all
bidders k \in N \setminus \{ i, j\} bid 0 with probability 1. The behavior of the gadget is then
determined by the precise construction of Fi,j .

Base gadget. The base gadget is a unary gadget with input bidder j and output
bidder i that has four parameters \gamma \ell , \gamma r, \ell , r \in [0, 1] with \gamma \ell +\gamma r < 1 and r - \ell > 0. The
piecewise constant density function of Fi,j is defined as follows. There is a piece of
volume \gamma \ell in the interval [1+1/2, 1+3/4], a piece of volume 1 - \gamma \ell  - \gamma r in [2+\ell , 2+r],
and finally a piece of volume \gamma r in [3 + 1/4, 3 + 1/2]. See Figure 2 for an illustration.
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0 1 2 3 41+ 1
2

2+\ell 1+ 3
4

2 + r

\gamma \ell \gamma r
1 - \gamma \ell  - \gamma r

Fi,j

Base Gadget

3+ 1
4 3+ 1

2

Fig. 2: An illustration of the base gadget. The density of Fi,j is depicted. When
\gamma \ell = \gamma r = 1/3, \ell = 1/3 and r = 2/3 we obtain a standard base gadget, which
essentially (approximately) ``copies"" the value v[i] of the input bidder i to the value
v[j] of the output bidder j.

As a result, because of the no-overbidding assumption, bidder i will believe that all
bidders k \in N \setminus \{ i, j\} bid 0 with probability 1. The behavior of the gadget is then
determined by the precise construction of Fi,j .

Base Gadget. The base gadget is a unary gadget with input bidder j and output
bidder i that has four parameters \gamma \ell , \gamma r, \ell , r \in [0, 1] with \gamma \ell +\gamma r < 1 and r - \ell > 0. The
piecewise constant density function of Fi,j is defined as follows. There is a piece of
volume \gamma \ell in the interval [1+1/2, 1+3/4], a piece of volume 1 - \gamma \ell  - \gamma r in [2+\ell , 2+r],
and finally a piece of volume \gamma r in [3 + 1/4, 3 + 1/2]. See Figure 2 for an illustration.

When the parameters are (\gamma \ell , \gamma r, \ell , r) = (1/3, 1/3, 1/3, 2/3), we call this the stan-
dard base gadget. It will immediately follow from Claim 5.8 below that if the input
bidder j of the standard base gadget is valid, then so is the output bidder i, and
furthermore v[i] = v[j] \pm 6\varepsilon . In other words, this gadget can be used to copy the
value encoded by one bidder onto some other bidder.

Claim 5.8. Let \gamma \ell , \gamma r, \ell , r \in [0, 1] with \gamma \ell , \gamma r \geq 1/20, \gamma \ell + \gamma r < 1 and \ell < r.
Consider a base gadget with input bidder j and output bidder i, and parameters
(\gamma \ell , \gamma r, \ell , r). It holds that:

\bullet If the input bidder j is almost-valid, then the output bidder i is also almost-
valid.

\bullet If \gamma \ell , \gamma r \geq 1/3 and j is almost-valid, then i is valid and

v[i] = (3\gamma \ell  - 1) + 3(1 - \gamma \ell  - \gamma r)
T[2+\ell ,2+r](\alpha j(1)) - (2 + \ell )

r  - \ell 
\pm 6\varepsilon .

Proof. We begin by obtaining some equations that will be useful for various proofs
in this section. Consider any unary gadget with input bidder j and output bidder i.
To simplify notation, for b \in \{ 0, 1, 2, 3, 4\} , let pb be the probability that bidder j bids
b, as perceived by bidder i. Formally,

pb := Pr
vj\sim Fi,j

[\beta j(vj) = b] =

\biggl\{ 
Fi,j(\alpha j(b)) - Fi,j(\alpha j(b - 1)) if b \in \{ 1, 2, 3, 4\} 
Fi,j(\alpha j(0)) if b = 0.

Recall the quantity Hi(b,\bfitbeta  - i) defined in Section 3, which represents the probability
that bidder i wins the auction if she bids b, and the other bidders act according
to \bfitbeta  - i. We drop \bfitbeta  - i from the notation, since it is clear from the context. Going
back to our unary gadget, it is easy to see that Hi(0) = p0/n, Hi(1) = p0 + p1/2,
Hi(2) = p0+p1+p2/2, Hi(3) = p0+p1+p2+p3/2 and Hi(4) = p0+p1+p2+p3+p4/2.
Here we used the fact that, by construction of Fi,k, bidder i perceives that all other
bidders k \in N \setminus \{ i, j\} bid 0 with probability 1.

Fig. 2. An illustration of the base gadget. The density of Fi,j is depicted. When \gamma \ell = \gamma r = 1/3,
\ell = 1/3, and r = 2/3 we obtain a standard base gadget, which essentially (approximately) ``copies""
the value v[i] of the input bidder i to the value v[j] of the output bidder j.

When the parameters are (\gamma \ell , \gamma r, \ell , r) = (1/3, 1/3, 1/3, 2/3), we call this the stan-
dard base gadget. It will immediately follow from Claim 5.8 below that if the input
bidder j of the standard base gadget is valid, then so is the output bidder i, and
furthermore v[i] = v[j] \pm 6\varepsilon . In other words, this gadget can be used to copy the
value encoded by one bidder onto some other bidder.

Claim 5.8. Let \gamma \ell , \gamma r, \ell , r \in [0, 1] with \gamma \ell , \gamma r \geq 1/20, \gamma \ell +\gamma r < 1, and \ell < r. Con-
sider a base gadget with input bidder j, output bidder i, and parameters (\gamma \ell , \gamma r, \ell , r).
It holds that

\bullet if the input bidder j is almost-valid, then the output bidder i is also almost-
valid;

\bullet if \gamma \ell , \gamma r \geq 1/3 and j is almost-valid, then i is valid and

v[i] = (3\gamma \ell  - 1) + 3(1 - \gamma \ell  - \gamma r)
T[2+\ell ,2+r](\alpha j(1)) - (2 + \ell )

r  - \ell 
\pm 6\varepsilon .

Proof. We begin by obtaining some equations that will be useful for various proofs
in this section. Consider any unary gadget with input bidder j and output bidder i.
To simplify notation, for b \in \{ 0, 1, 2, 3, 4\} , let pb be the probability that bidder j bids
b, as perceived by bidder i. Formally,

pb := Pr
vj\sim Fi,j

[\beta j(vj) = b] =

\biggl\{ 
Fi,j(\alpha j(b)) - Fi,j(\alpha j(b - 1)) if b \in \{ 1, 2, 3, 4\} ,
Fi,j(\alpha j(0)) if b = 0.

Recall the quantity Hi(b,\bfitbeta  - i) defined in section 3, which represents the probability
that bidder i wins the auction if she bids b, and the other bidders act according
to \bfitbeta  - i. We drop \bfitbeta  - i from the notation, since it is clear from the context. Going
back to our unary gadget, it is easy to see that Hi(0) = p0/n, Hi(1) = p0 + p1/2,
Hi(2) = p0+p1+p2/2, Hi(3) = p0+p1+p2+p3/2, and Hi(4) = p0+p1+p2+p3+p4/2.
Here we used the fact that, by construction of Fi,k, bidder i perceives that all other
bidders k \in N \setminus \{ i, j\} bid 0 with probability 1.

Now, by Lemma 3.1 the first jump point \alpha i(0) of \beta i must necessarily satisfy
ui(0,\bfitbeta  - i;\alpha i(0)) \geq ui(1,\bfitbeta  - i;\alpha i(0))  - \varepsilon (because the interval (0, \alpha i(0)) is nonempty
by the nonoverbidding assumption). We can rewrite this as Hi(0) \cdot (\alpha i(0)  - 0) \geq 
Hi(1) \cdot (\alpha i(0) - 1) - \varepsilon , which yields

\alpha i(0) \leq 
Hi(1) + \varepsilon 

Hi(1) - Hi(0)
= 1 +

Hi(0) + \varepsilon 

Hi(1) - Hi(0)
= 1 +

p0/n+ \varepsilon 

p0(n - 1)/n+ p1/2
,(5.1)

where the fraction is interpreted as +\infty when p0 + p1 = 0. Similarly, by Lemma 3.1,
the fourth jump point must satisfy ui(4,\bfitbeta  - i;\alpha i(3)) \geq ui(3,\bfitbeta  - i;\alpha i(3))  - \varepsilon , unless
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 99

\alpha i(3) = 5. Rewriting this as Hi(4) \cdot (\alpha i(3)  - 4) \geq Hi(3) \cdot (\alpha i(3)  - 3)  - \varepsilon , we obtain
that \alpha i(3) = 5 or

\alpha i(3) \geq 
4Hi(4) - 3Hi(3) - \varepsilon 

Hi(4) - Hi(3)

= 4 +
Hi(3) - \varepsilon 

Hi(4) - Hi(3)
= 4 +

p0 + p1 + p2 + p3/2 - \varepsilon 

p3/2 + p4/2
.

(5.2)

Again, by Lemma 3.1, the third jump point must satisfy

ui(3,\bfitbeta  - i;\alpha i(2)) \geq ui(2,\bfitbeta  - i;\alpha i(2)) - \varepsilon 

unless \alpha i(2) = \alpha i(3), and it must satisfy

ui(2,\bfitbeta  - i;\alpha i(2)) \geq ui(3,\bfitbeta  - i;\alpha i(2)) - \varepsilon 

unless \alpha i(2) = \alpha i(1). Thus it follows that

\alpha i(2) = T[\alpha i(1),\alpha i(3)]

\biggl( 
3Hi(3) - 2Hi(2)\pm \varepsilon 

Hi(3) - Hi(2)

\biggr) 

= T[\alpha i(1),\alpha i(3)]

\biggl( 
3 +

2p0 + 2p1 + p2 \pm 2\varepsilon 

p2 + p3

\biggr) 
.

(5.3)

Finally, by Lemma 3.1, the second jump point must satisfy

ui(2,\bfitbeta  - i;\alpha i(1)) \geq ui(1,\bfitbeta  - i;\alpha i(1)) - \varepsilon 

unless \alpha i(1) = \alpha i(2), and it must satisfy

ui(1,\bfitbeta  - i;\alpha i(1)) \geq ui(2,\bfitbeta  - i;\alpha i(1)) - \varepsilon 

unless \alpha i(1) = \alpha i(0). As a result, it must be that

\alpha i(1) = T[\alpha i(0),\alpha i(2)]

\biggl( 
2Hi(2) - Hi(1)\pm \varepsilon 

Hi(2) - Hi(1)

\biggr) 

= T[\alpha i(0),\alpha i(2)]

\biggl( 
2 +

2p0 + p1 \pm 2\varepsilon 

p1 + p2

\biggr) 
.

(5.4)

We are now ready to prove Claim 5.8. Consider a base gadget with input bidder
j, output bidder i, and parameters (\gamma \ell , \gamma r, \ell , r), such that \gamma \ell , \gamma r \geq 1/20, \gamma \ell + \gamma r < 1,
and \ell < r. Let pb denote the probability that bidder j bids b, as perceived by bidder
i.

Assume first that bidder j is almost-valid. Then, by the construction of Fi,j ,
we obtain that p0 = p3 = p4 = 0, p1 \in [\gamma \ell , 1  - \gamma r], and p2 = 1  - p1. Using (5.1)
we have that \alpha i(0) \leq 1 + \varepsilon 

p1/2
\leq 1 + 2\varepsilon 

\gamma \ell 
\leq 1 + 1/2 since \gamma \ell \geq 4\varepsilon . Using (5.2) we

obtain that \alpha i(3) = 5, since p3 = p4 = 0 and 1  - \varepsilon > 0. Equation (5.3) yields that
\alpha i(2) \geq 3+ 1+p1 - 2\varepsilon 

1 - p1
\geq 3+ 1/2, since \varepsilon \leq 1/4. Thus, in order to show that bidder i is

almost-valid, it remains to prove that \alpha i(1) \in [2, 3]. Using (5.4) we can write

\alpha i(1) = T[\alpha i(0),\alpha i(2)]

\biggl( 
2 +

2p0 + p1 \pm 2\varepsilon 

p1 + p2

\biggr) 
= T[\alpha i(0),\alpha i(2)] (2 + p1 \pm 2\varepsilon ) = 2 + p1 \pm 2\varepsilon ,

where we used the fact that p1 + 2\varepsilon \leq 1, since p1 \leq 1  - \gamma r and \gamma r \geq 2\varepsilon . Note that
this also yields that \alpha i(1) \leq 3, while the bound \alpha i(1) \geq 2 holds because p1 \geq \gamma \ell and
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100 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS

\gamma \ell \geq 2\varepsilon (or simply because of the nonoverbidding assumption). As a result, bidder i
is almost-valid.

Now consider the case where, in addition, \gamma \ell , \gamma r \geq 1/3. We can write

p1 = \gamma \ell + (1 - \gamma \ell  - \gamma r)
T[2+\ell ,2+r](\alpha j(1)) - (2 + \ell )

r  - \ell 
.

In particular, it holds that p1 \in [1/3, 2/3]. Since, as shown above, \alpha i(1) = 2+p1\pm 2\varepsilon ,
we immediately obtain that \alpha i(1) \in [2 + 1/3 - 2\varepsilon , 2 + 2/3 + 2\varepsilon ], i.e., bidder i is valid.
Furthermore, we can write

v[i] = T[0,1](3(\alpha i(1) - 2 - 1/3))

= 3p1  - 1\pm 6\varepsilon 

= (3\gamma \ell  - 1) + 3(1 - \gamma \ell  - \gamma r)
T[2+\ell ,2+r](\alpha j(1)) - (2 + \ell )

r  - \ell 
\pm 6\varepsilon ,

which proves the claim.

Projection gadget. The projection gadget with input bidder j and output bid-
der i uses two additional auxiliary-bidders, k and k\prime , and consists of three uses of the
standard base gadget. Specifically, the first standard base gadget has input j and
output k, the second such gadget has input k and output k\prime , and the third has input
k\prime and output i. See Figure 3(a) for an illustration. As stated in the claim below, the
projection gadget has the notable property that the output bidder i is always valid.
This gadget will be used to ultimately ensure that all the gate-bidders are valid.

Claim 5.9. The projection gadget with input bidder j and output bidder i ensures
that

\bullet the output bidder i is valid, and
\bullet if the input bidder j is valid, then v[i] = v[j]\pm 18\varepsilon .

Proof. The second point follows immediately from Claim 5.8 applied to the stan-
dard base gate. Thus, it remains to show that the output bidder i is always valid.
Consider the first standard base gadget, which has input bidder j and output bidder
k. Let pb denote the probability that bidder j bids b, as perceived by bidder k. Since
the density function of Fk,j has a block of volume 1/3 lying in [1 + 1/2, 1 + 3/4], and
since we do not allow overbidding, it follows that p0 + p1 \geq 1/3. Using (5.1) this
implies that

\alpha k(0) \leq 1 +
p0/n+ \varepsilon 

p0(n - 1)/n+ p1/2
\leq 1 + 6/n+ 6\varepsilon \leq 1 + 1/2

since without loss of generality n \geq 24 and \varepsilon \leq 1/24. Next, using (5.2) we immediately
get that \alpha k(3) \geq 4 since \varepsilon < 1/3 (or just by using the nonoverbidding assumption).
Then (5.3) implies that

\alpha k(2) = T[\alpha k(1),\alpha k(3)]

\biggl( 
3 +

2p0 + 2p1 + p2 \pm 2\varepsilon 

p2 + p3

\biggr) 
\geq 4 - 2\varepsilon \geq 3 + 1/2,

where we used p0+p1 \geq 1/3, p2+p3 \leq 2/3, and \varepsilon \leq 1/4. Finally, note that \alpha k(1) \geq 2
by the nonoverbidding assumption.

Next, consider the second standard base gadget, which has input bidder k and
output bidder k\prime . Let pb denote the probability that bidder k bids b, as perceived
by bidder k\prime . From the construction of the density function of F

k
\prime 
,k

and the bounds
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(a) The Projection gadget.
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(b) The G\times 2 gadget.
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(c) The G1 - gadget.

Fig. 3: The Projection, G\times 2 and G1 - gadgets. The probability density functions of
the corresponding subjective priors are shown.Fig. 3. The projection G\times 2 and G1 - gadgets. The probability density functions of the corre-
sponding subjective priors are shown.
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102 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS

obtained on the jump points of k in the first step, it follows that p0 = p3 = p4 = 0
and p1 \geq 1/3. Using (5.1)--(5.3) similarly to above, we obtain that \alpha 

k
\prime (0) \leq 1 + 1/2,

\alpha 
k
\prime (2) \geq 3 + 1/2, and \alpha 

k
\prime (3) = 5. As before, we have that \alpha 

k
\prime (1) \geq 2 by the

nonoverbidding assumption, and using (5.4) we also obtain that

\alpha 
k
\prime (1) = T[\alpha 

k
\prime (0),\alpha 

k
\prime (2)]

\biggl( 
2 +

2p0 + p1 \pm 2\varepsilon 

p1 + p2

\biggr) 
\leq 2 + 1 + 2\varepsilon \leq 3 + 1/4

since \varepsilon \leq 1/8.
Finally, consider the third and final standard base gadget, which has input bidder

k\prime and output bidder i. Let pb denote the probability that bidder k\prime bids b, as perceived
by bidder i. From the construction of the density function of F

i,k
\prime and the bounds

obtained on the jump points of k\prime in the previous step, it follows that p0 = p3 = p4 = 0,
p1 \geq 1/3, and p2 \geq 1/3. Again using (5.1)--(5.3) as in the previous step, we obtain
that \alpha i(0) \leq 1 + 1/2, \alpha i(2) \geq 3 + 1/2, and \alpha i(3) = 5. Using (5.4) we have that

\alpha i(1)=T[\alpha i(0),\alpha i(2)]

\biggl( 
2+

2p0+p1 \pm 2\varepsilon 

p1+p2

\biggr) 
=2+p1 \pm 2\varepsilon \in [2+1/3 - 2\varepsilon , 2+2/3+2\varepsilon ],

and thus bidder i is indeed valid.

\bfitG \times 2 gadget. The G\times 2 gadget with input bidder j and output bidder i uses an
additional auxiliary-bidder k and consists of one use of the base gadget and one use
of the projection gadget. In more detail, the base gadget has input j, output k, and
parameters (\gamma \ell , \gamma r, \ell , r) = (1/3, 1/3, 1/3, 1/2), while the projection gate has input k
and output i. See Figure 3(b) for an illustration.

Claim 5.10. The G\times 2 gadget with input bidder j and output bidder i ensures
that

\bullet the output bidder i is valid, and
\bullet if the input bidder j is valid, then v[i] = T(2 \cdot v[j])\pm 24\varepsilon .

Proof. The fact that bidder i is valid follows from our use of the projection gadget
and the first bullet point in Claim 5.9. Now consider the case where bidder j is valid.
Since \gamma \ell = \gamma r = 1/3, by Claim 5.8 we know that bidder k is also valid and it holds
that

v[k] =
T[2+\ell ,2+r](\alpha j(1)) - (2 + \ell )

r  - \ell 
\pm 6\varepsilon =T[0,1] (6\alpha j(1) - 14)\pm 6\varepsilon =T[0,1](2 \cdot v[j])\pm 6\varepsilon .

Since k is valid, we can use the second bullet point in Claim 5.9, which yields v[i] =
v[k]\pm 18\varepsilon = T[0,1](2 \cdot v[j])\pm 24\varepsilon .

\bfitG 1 - gadget. The G1 - gadget with input bidder j and output bidder i uses
three additional auxiliary-bidders k1, k2, k3. First, a base gadget is used with input
j, output k1, and parameters (\gamma \ell , \gamma r, \ell , r) = (1/6, 2/3, 1/3, 2/3). Next, the density
function of Fk2,k1 has a block of volume 2/3 in [1+1/2, 1+3/4], and a block of volume
1/3 in [4, 5]. Then we use a base gadget with input k2, output k3, and parameters
(\gamma \ell , \gamma r, \ell , r) = (1/3, 1/3, 2/3, 5/6). Finally, we use a projection gadget with input k3
and output i. See Figure 3(c) for an illustration.

The crucial idea behind the construction of this gadget is that the third jump
point (instead of the second one) is used to encode information in some intermediate
step. This allows us to simulate the nonmonotone operation x \mapsto \rightarrow 1 - x.
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 103

Claim 5.11. The G1 - gadget with input bidder j and output bidder i ensures
that

\bullet the output bidder i is valid, and
\bullet if the input bidder j is valid, then v[i] = 1 - v[j]\pm 60\varepsilon .

Proof. First of all, note that imust be valid, because of the corresponding property
of the projection gadget (Claim 5.9). Now consider the case where j is valid. By Claim
5.8 it follows that bidder k1 is almost-valid, in particular \alpha k1

(3) = 5 and \alpha k1
(1) \leq 3.

Let pb denote the probability that bidder j bids b, as perceived by bidder k1. Since j is
valid, we immediately obtain that p0 = p3 = p4 = 0. Furthermore, by the construction
of Fk1,j , it is easy to see that p1 = 1/6 + (1  - 1/6  - 2/3)v[j] = 1/6 + v[j]/6. Next,
using (5.3) we can write

\alpha k1
(2) = T[\alpha k1

(1),\alpha k1
(3)]

\biggl( 
3 +

2p0 + 2p1 + p2 \pm 2\varepsilon 

p2 + p3

\biggr) 

= T[\alpha k1
(1),\alpha k1

(3)]

\biggl( 
3 +

1 + p1 \pm 2\varepsilon 

1 - p1

\biggr) 

= 3 +
7/6 + v[j]/6

5/6 - v[j]/6
\pm 3\varepsilon 

= 4 +
2 + 2v[j]

5 - v[j]
\pm 3\varepsilon .

Now consider bidder k2. Let pb denote the probability that bidder k1 bids b, as
perceived by bidder k2. By construction of Fk2,k1

and since k1 is almost-valid, it is
easy to see that p0 = p4 = 0, p1 = 2/3, and p2 + p3 = 1/3. By the same arguments
used in the proof of Claim 5.8 it follows that \alpha k2(0) \leq 1 + 1/2. By using (5.2) we

obtain \alpha k2(3) \geq 4 + 2/3+1/6 - \varepsilon 
1/6 \geq 5. Next, using (5.3) we obtain

\alpha k2(2) \geq T[\alpha k2
(1),\alpha k2

(3)]

\biggl( 
3 +

2p0 + 2p1 + p2 \pm 2\varepsilon 

p2 + p3

\biggr) 
\geq T[\alpha k2

(1),5]

\biggl( 
3 +

4/3 - 2\varepsilon 

1/3

\biggr) 
= 5.

Now observe that by construction of Fk2,k1
and the expression obtained earlier for

\alpha k1
(2)

p2 =
T[4,5](\alpha k1

(2)) - 4

3
=

2 + 2v[j]

15 - 3v[j]
\pm \varepsilon .

As a result, it follows that

2p0 + p1
p1 + p2

=
2/3

2/3 + 2+2v[j]
15 - 3v[j] \pm \varepsilon 

=
2/3

2/3 + 2+2v[j]
15 - 3v[j]

\pm 3\varepsilon = 5/6 - v[j]/6\pm 3\varepsilon ,

where we used \varepsilon \leq 2/15. Finally, using (5.4) we obtain

\alpha k2
(1) = T[\alpha k2

(0),\alpha k2
(2)]

\biggl( 
2 +

2p0 + p1 \pm 2\varepsilon 

p1 + p2

\biggr) 

= T[\alpha k2
(0),\alpha k2

(2)]

\biggl( 
2 + 5/6 - v[j]/6\pm 3\varepsilon \pm 2\varepsilon 

p1 + p2

\biggr) 

= 2 + 5/6 - v[j]/6\pm 6\varepsilon .

Note in particular that bidder k2 is almost-valid, since \varepsilon \leq 1/36.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

3/
23

 to
 1

31
.1

88
.6

.1
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



104 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS26 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, AND PO\c CAS

1 2 3 41+1
2 2+104

2001+3
4 2+779

800

Fk3,k2

G1 - Gadget
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5
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Fk2,k1

8/20 Fk1,j2

1/4

Fig. 4: The G\phi gadget. The probability density functions of the corresponding sub-
jective priors are shown.

where we used the bounds we have on these probabilities and \varepsilon \leq 1/4. Finally, we
have

\alpha k1
(2) = T[\alpha k1

(1),\alpha k1
(3)]

\biggl( 
3 +

Hk1(2)\pm \varepsilon 

Hk1
(3) - Hk1

(2)

\biggr) 

= T[3,5]

\biggl( 
3 +

1/3 + (p1 + q1)/6 + p1q1/3\pm \varepsilon 

1 - (1/3 + (p1 + q1)/6 + p1q1/3)

\biggr) 

= 3 +
1 + (p1 + q1)/2 + p1q1
2 - (p1 + q1)/2 - p1q1

\pm 3\varepsilon 

= 3 +
1

2
+

3

2

(p1 + q1)/2 + p1q1
2 - (p1 + q1)/2 - p1q1

\pm 3\varepsilon 

where we used the fact that (p1+q1)/2+p1q1
2 - (p1+q1)/2 - p1q1

\leq 1, since p1, q1 \leq 12/20. As p1, q1 \geq 
1/20 and \varepsilon \leq 1/60, we also have that \alpha k1(2) \geq 3 + 1/2. In particular, k1 is almost-
valid. Note that since j1 and j2 are valid, we have p1 = 1/20 + 11v[j1]/20 and
q1 = 1/20 + 11v[j2]/20.

Next, we consider bidder k2. Let p\prime b denote the probability that bidder k1 bids
b, as perceived by bidder k2. By the previous paragraph, we have p\prime 0 = 0, p\prime 1 = 1/2,
p\prime 4 = 0 and

p\prime 2 =
1

3

3

2

(p1 + q1)/2 + p1q1
2 - (p1 + q1)/2 - p1q1

\pm 3\varepsilon =
1

2

(p1 + q1)/2 + p1q1
2 - (p1 + q1)/2 - p1q1

\pm 3\varepsilon 

where we used the fact that the height of the block of volume of Fk2,k1
in [3+1/2, 5] is

1/3. Since the density function of Fk2,k1
has a block of volume 1/2 in [1+1/2, 1+3/4],

Fig. 4. The G\phi gadget. The probability density functions of the corresponding subjective priors
are shown.

Since bidder k2 is almost-valid, and we use a base gadget with \gamma \ell = \gamma r = 1/3
with input k2 and output k3, it follows by Claim 5.8 that bidder k3 is valid and

v[k3] =
T[2+\ell ,2+r](\alpha k2

(1)) - (2 + 4/6)

1/6
\pm 6\varepsilon = 1 - v[j]\pm 42\varepsilon .

Finally, the projection gadget with input k3 and output i ensures that v[i] = v[k3]\pm 
18\varepsilon = 1 - v[j]\pm 60\varepsilon .

\bfitG \bfitphi gadget. The G\phi gadget with input bidders j1 and j2 and output bidder
i is a binary gadget with additional auxiliary-bidders k1, k2, k3. First of all, for all
t \in N \setminus \{ j1, j2, k1\} , we set Fk1,t to have density function with a single block of volume
1 in [0, 1]. We set both Fk1,j1 and Fk1,j2 to be distributions as in our construction
of the base gadget with parameters (\gamma \ell , \gamma r, \ell , r) = (1/20, 8/20, 1/3, 2/3). The density
function of Fk2,k1

has a block of volume 1/2 in [1 + 1/2, 1 + 3/4] and a block of
volume 1/2 in [3 + 1/2, 5]. Next, we use a base gadget with input k2, output k3,
and parameters (\gamma \ell , \gamma r, \ell , r) = (1/3, 1/3(1 + 1/4), 104/200, 779/800). Finally, we use
a G1 - gadget with input k3 and output i. See Figure 4 for an illustration. We have
the following claim.

Claim 5.12. The G\phi gadget with input bidders j1, j2 and output bidder i ensures
that

\bullet the output bidder i is valid, and
\bullet if the input bidders j1 and j2 are valid, then

v[i] = \phi (v[j1],v[j2])\pm 86\varepsilon =
1

4
(v[j1] + 1)(v[j2] + 1)\pm 86\varepsilon .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

3/
23

 to
 1

31
.1

88
.6

.1
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 105

Proof. Bidder i is guaranteed to be valid, because it is the output bidder of the
G1 - gadget (Claim 5.11). Now assume that j1 and j2 are valid. Let pb denote the
probability that bidder j1 bids b, as perceived by bidder k1. Similarly, let qb denote
the probability that bidder j2 bids b, as perceived by bidder k1. By construction of
Fk1,j1 and Fk1,j2 , and because j1 and j2 are valid, we know that p0 = p3 = p4 =
q0 = q3 = q4 = 0, p1, q1 \geq 1/20, and p2, q2 \geq 8/20. Recall that Hk1(b) is used to
denote the probability that bidder k1 wins if she bids b (from k1's perspective). Thus
we immediately obtain that Hk1

(0) = 0, Hk1
(1) = p1q1/3, Hk1

(2) = p1q1 + p2q1/2 +
p1q2/2 + p2q2/3 = 1/3 + (p1 + q1)/6 + p1q1/3, and Hk1

(3) = Hk1
(4) = 1. With this

in hand, we now obtain the following (just as we did for (5.1)--(5.4)):

\alpha k1
(0) \leq 1 +

Hk1
(0) + \varepsilon 

Hk1
(1) - Hk1

(0)
= 1 +

\varepsilon 

p1q1/3
\leq 1 + 1200\varepsilon \leq 1 + 1/2

since \varepsilon \leq 1/2400. Similarly, since Hk1
(4) - Hk1

(3) = 0 and Hk1
(3) = 1 > \varepsilon , we have

that \alpha k1
(3) = 5. We also have

\alpha k1
(1) \leq 2 +

Hk1
(1) + \varepsilon 

Hk1(2) - Hk1(1)
\leq 2 +

p1q1/3 + \varepsilon 

1/3 + (p1 + q1)/6
\leq 3,

where we used the bounds we have on these probabilities and \varepsilon \leq 1/4. Finally, we
have

\alpha k1(2) = T[\alpha k1
(1),\alpha k1

(3)]

\biggl( 
3 +

Hk1(2)\pm \varepsilon 

Hk1
(3) - Hk1

(2)

\biggr) 

= T[3,5]

\biggl( 
3 +

1/3 + (p1 + q1)/6 + p1q1/3\pm \varepsilon 

1 - (1/3 + (p1 + q1)/6 + p1q1/3)

\biggr) 

= 3 +
1 + (p1 + q1)/2 + p1q1
2 - (p1 + q1)/2 - p1q1

\pm 3\varepsilon 

= 3 +
1

2
+

3

2

(p1 + q1)/2 + p1q1
2 - (p1 + q1)/2 - p1q1

\pm 3\varepsilon ,

where we used the fact that (p1+q1)/2+p1q1
2 - (p1+q1)/2 - p1q1

\leq 1, since p1, q1 \leq 12/20. As p1, q1 \geq 
1/20 and \varepsilon \leq 1/60, we also have that \alpha k1

(2) \geq 3 + 1/2. In particular, k1 is almost-
valid. Note that since j1 and j2 are valid, we have p1 = 1/20 + 11v[j1]/20 and
q1 = 1/20 + 11v[j2]/20.

Next, we consider bidder k2. Let p\prime b denote the probability that bidder k1 bids
b, as perceived by bidder k2. By the previous paragraph, we have p\prime 0 = 0, p\prime 1 = 1/2,
p\prime 4 = 0, and

p\prime 2 =
1

3

3

2

(p1 + q1)/2 + p1q1
2 - (p1 + q1)/2 - p1q1

\pm 3\varepsilon =
1

2

(p1 + q1)/2 + p1q1
2 - (p1 + q1)/2 - p1q1

\pm 3\varepsilon ,

where we used the fact that the height of the block of volume of Fk2,k1 in [3+1/2, 5] is
1/3. Since the density function of Fk2,k1 has a block of volume 1/2 in [1+1/2, 1+3/4],
as before we obtain that \alpha k2

(0) \leq 1 + 1/2. Using (5.2) and (5.3), we also have

\alpha k2
(3) \geq 4 +

p\prime 0 + p\prime 1 + p\prime 2 + p\prime 3/2 - \varepsilon 

p\prime 3/2 + p\prime 4/2
\geq 5

as well as

\alpha k2
(2) \geq T[\alpha k2

(1),\alpha k2
(3)]

\biggl( 
3 +

2p\prime 0 + 2p\prime 1 + p\prime 2 \pm 2\varepsilon 

p\prime 2 + p\prime 3

\biggr) 
\geq 3 + 1/2.
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Finally, (5.4) yields

\alpha k2
(1) = T[\alpha k1

(0),\alpha k1
(2)]

\biggl( 
2 +

2p\prime 0 + p\prime 1 \pm 2\varepsilon 

p\prime 1 + p\prime 2

\biggr) 

= T[\alpha k1
(0),\alpha k1

(2)]

\left( 
 2 +

1/2

1/2 + 1
2

(p1+q1)/2+p1q1
2 - (p1+q1)/2 - p1q1

\pm 3\varepsilon 

\right) 
 \pm 4\varepsilon 

= 2 +
2 - (p1 + q1)/2 - p1q1

2
\pm 10\varepsilon .

Substituting in p1 = 1/20 + 11v[j1]/20 and q1 = 1/20 + 11v[j2]/20, we compute

\alpha k2
(1) = 2 + 1 + 1/8 - 1

2
(11/20 + 11v[j1]/20)(11/20 + 11v[j2]/20)\pm 10\varepsilon 

= 2 + 9/8 - 121

200
\phi (v[j1],v[j2])\pm 10\varepsilon .

Note that we have \alpha k2
(1) \in [2 + 104/200, 2+ 779/800]\pm 10\varepsilon . In particular, bidder k2

is almost-valid.
Since bidder k3 is the output of a base gadget with input k2 and parameters

(\gamma \ell , \gamma r, \ell , r) = (1/3, 1/3(1+ 1/4), 104/200, 779/800), it follows by Claim 5.8 that k3 is
valid and

v[k3] = 3(1 - \gamma \ell  - \gamma r)
T[2+\ell ,2+r](\alpha k2(1)) - (2 + \ell )

r  - \ell 
\pm 6\varepsilon 

=
200

121
(\alpha k2

(1) - (2 + \ell ))\pm 6\varepsilon 

=
200

121

\biggl( 
2 + 9/8 - 121

200
\phi (v[j1],v[j2]) - (2 + 104/200)

\biggr) 
\pm 26\varepsilon 

= 1 - \phi (v[j1],v[j2])\pm 26\varepsilon .

Finally, it is easy to see that the G1 - gadget with input k3 and output i ensures the
desired value for bidder i (Claim 5.11).

Finishing the proof. Using the gadgets we have described above we can now
enforce the constraints of the Gcircuit instance. Indeed, for each gate gi = (G, j, k),
where G \in \scrG = \{ G\times 2, G1 - , G\phi \} , it suffices to use the gadget corresponding to the
gate type G, with output bidder i and input bidder j (as well as k, in the case
G = G\phi ). Since the distributions are subjective, we can reuse a bidder j as an input
to multiple different gadgets, without any interference. By Claims 5.10, 5.11, and 5.12
it immediately follows that the gate-bidders 1, 2, . . . ,m must all be valid, since each of
them is the output of some gadget. But this means that for any gate gi = (G, j, k), the
input bidder j (and k, if applicable) will be valid, because she is also a gate-bidder.
As a result, again by Claims 5.10, 5.11, and 5.12, it follows that the gadgets will
correctly enforce their constraints on all values v[i].

To obtain a solution, it suffices to set v[gi] := v[i] for all i \in [m]. For the case
\varepsilon = 0, note that since every gate-bidder i is valid, we have that \alpha i(1) \in [2+1/3, 2+2/3]
and as a result v[i] = T[0,1](3(\alpha i(1)  - 2  - 1/3)) = 3(\alpha i(1)  - 2  - 1/3), which indeed
yields an SL-reduction [23]. By scaling back to the original value space [0, 1], the
proof yields that for all \varepsilon \in [0, 1/105], from any \varepsilon -BNE of the auction we can extract
a 500\varepsilon -satisfying assignment for the generalized circuit. As discussed at the beginning
of the section, this yields both PPAD- and FIXP-hardness.
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 107

6. An efficient algorithm for a constant number of bidders and bids.
In this section, we design an algorithm which computes an \varepsilon -Bayes--Nash equilibrium
of the FPA when (a) the number of bidders n is constant, (b) the size of the bidding
space | B| is constant, and (c) the value distributions Fi,j of the bidders are piecewise
polynomial .

To be more precise, our input comprises

- a set of bids9 B = \{ b0, b1, . . . , b| B|  - 1\} \subset [0, 1];
- a partition10 of [0, 1] into K intervals [x\ell  - 1, x\ell ], \ell = \{ 1, 2, . . . ,K\} , with ra-
tional endpoints;

- for each distribution Fi,j and each subinterval [x\ell  - 1, x\ell ], a vector of rationals

(ai,j,\ell 0 , ai,j,\ell 1 , . . . , ai,j,\ell d ).
Then (the cumulative distribution function of) Fi,j is defined as

Fi,j(z) = F \ell 
i,j(z) for z \in [x\ell  - 1, x\ell ],

where

F \ell 
i,j(z) =

d\sum 

\kappa =0

ai,j,\ell \kappa z\kappa (6.1)

is the polynomial representation of Fi,j in the \ell th interval. Of course, the input should
respect the conditions

F 1
i,j(0) \geq 0, FK

i,j(1) = 1, F \ell 
i,j(x\ell ) = F \ell +1

i,j (x\ell ) for \ell = 1, 2, . . . ,K  - 1,

and that each F \ell 
i,j is nondecreasing on [x\ell  - 1, x\ell ].

Finally, when we say that n and | B| are fixed, we mean that they are constant
functions of the other parameters of the input.

We have the following theorem.

Theorem 6.1. For a fixed number of bidders, a fixed bidding space, and piecewise
polynomial value distributions, an \varepsilon -BNE of the FPA can be computed in polynomial
time, even for subjective priors and even when \varepsilon is inversely exponential in the input
size.

The remainder of the section is devoted to developing the algorithm that will
prove Theorem 6.1.

At a high level, the algorithm will perform the following four steps:

1. It ``guesses,"" for each bidder, an assignment of the jump points of her best-
response strategy to the K subintervals [x\ell  - 1, x\ell ] above; intervals may be
allocated zero or multiple jump points. Since the number of bidders and
the size of the bidding space are constant, there is a total constant number of
jump points for all bidders. Therefore, this ``guessing"" step is an enumeration
of all such possible assignments; the subsequent steps of the algorithm are
run for any such assignment.

2. It ``guesses"" a set of effective jump points and bids. This is a technical corner
case to eliminate degenerate cases in which multiple jump points coincide.

9Recall that here | B| is fixed , i.e., not part of the input.
10Our assumption here of a common interval partition for the piecewise polynomial representa-

tion of all subjective priors Fi,j is for the sake of simplicity, and it is not critical for the positive
results of this section. In particular, it is not difficult to see that our model can handle different
partitions [xi,j

\ell  - 1, x
i,j
\ell ] with just a polynomial blow-up in the size of the representation; essentially

one needs to take the interval partition induced by all points \{ xi,j
\ell \} .
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b0b\prime i0

b1b\prime i1

b2b\prime i2
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b4b\prime i3

b5b\prime i4

Fig. 5: An illustration of the selection of effective jump points (b\prime ) and effective bids
(z\prime ), for | B| = 6. In the figure, jump points 3 and 4 coincide, and therefore among
those, only jump point 4 will be in the sequence used in the next step. Also, bid b3
is never used in the best-response function, as the strategy jumps directly from b2 to
b4, and therefore b3 will be excluded from the set of effective bids. In the end, the
effective jump points would be 1, 2, 4 and 5 and the effective bids will be b0, b1, b2, b4
and b5.

Notice that mi \leq | B| . Given the ``guessing"" in the current step, we let Li,j , Ri,j

denote the left and right, respectively, endpoints of the sub-interval in which the j-th
effective break point of player i lies; i.e., zi,j \in [Li,j , Ri,j ]. For ease of notation, we
also use the shortcut b\prime i,j = b\mu i(j) for the j-th effective bid of player i.

Again, since | B| is constant, we can enumerate over all possible effective jump
point subsequences \mu i in constant time and for each such subsequence, we proceed to
the next step.

Step 3: Solving a system of polynomial inequalities. From the previ-
ous two steps we have, for each bidder i, an assignment of effective jump points
zi,0, . . . , zi,mi

to intervals [x\ell  - 1, x\ell ]. In particular, zi,j is mapped to [Li,j , Ri,j ]. Be-
low, we express all the properties that must be satisfied by the effective jump points
at an (exact) BNE of the FPA as a system of polynomial inequalities; the system
includes inequalities to ensure

- that the positions of the jump points of each bidder i respect the ordering
implied by the set of indices, i.e., zi,j - 1 < zi,j for all j = 1, . . . ,mi,

- that the bidding strategies are non-overbidding,
- that the variables zi,j indeed correspond to jump points of best-responses, in
terms of the implications to the utility functions.

zi,j - 1 < zi,j \forall i, \forall j(6.2)

Lij \leq zi,j \leq Rij \forall i, \forall j(6.3)

zi,j \geq b\prime i,j \forall i, \forall j(6.4)

ui(b
\prime 
i,j , \bfitz  - i; zi,j) \geq ui(b, \bfitz  - i; zi,j) \forall i, \forall j, \forall b < b\prime i,j(6.5)

ui(b
\prime 
i,j - 1, \bfitz  - i; zi,j) \geq ui(b, \bfitz  - i; zi,j) \forall i, \forall j, \forall b > b\prime i,j - 1(6.6)

Fig. 5. An illustration of the selection of effective jump points (b\prime ) and effective bids (z\prime ), for
| B| = 6. In the figure, jump points 3 and 4 coincide, and therefore among those, only jump point
4 will be in the sequence used in the next step. Also, bid b3 is never used in the best-response
function, as the strategy jumps directly from b2 to b4, and therefore b3 will be excluded from the set
of effective bids. In the end, the effective jump points would be 1, 2, 4, and 5 and the effective bids
will be b0, b1, b2, b4, and b5.

Again, this can be done via enumeration given that the number of jump
points is constant.

3. It formulates the problem of finding the exact positions of the effective jump
points (within the intervals corresponding to the guessed allocation above)
as a system of polynomial inequalities of polynomially large degree. A \delta -
approximate solution to this system can be found using standard methods in
time polynomial in log(1/\delta ) and the input parameters.

4. It ``projects"" the approximate solution to the ``equilibrium space,"" as defined
by the constraints of the aforementioned system, ensuring that the resulting
object is indeed an \varepsilon -BNE, for some \varepsilon that can be made as small as needed,
by making \delta as small as needed.

Below we describe these steps in more detail.

Step 1: Guessing an allocation of jump points to intervals. Recall the
definition of the jump points \alpha i(b) from section 2, which represent the equilibrium
strategy of bidder i. Intuitively, \alpha i(b) is the largest value for which bidder i would
bid b or lower. Since | B| is constant, there is a constant number of such jump points
for each bidder, and since n is also constant, there is a constant number of jump
points overall. The algorithm enumerates over all the possible ways of assigning the
n \cdot (| B|  - 1) jump points to the intervals [x\ell  - 1, x\ell ] for \ell = 1, . . . ,K; this can be done
in time O(Kn| B| ). Then, for any possible such allocation, it moves to the next step.
We introduce variables yi,j , j = 1, 2, . . . , | B|  - 1, for the positions of the jump points
of the strategy of bidder i in [0, 1], and we set yi,0 = 0, yi,| B| = 1.

Step 2: Guessing a set of effective jump points and bids. We ``guess""
possible ``collisions"" of sequential jump points, where a collision happens when the
positions of two or more jump points coincide. In that case, we would like to only
keep a single representative from each coinciding jump point; the positions of these
representatives are denoted using the variables zij . We also use the variables b\prime i,j to
denote the corresponding bids, as subscribed by the chosen jump points. We refer to
the chosen jump points and bids as effective jump points and bids, respectively. See
Figure 5 for an illustration.

Formally, this corresponds to picking, for each bidder i, an (increasing) subse-
quence \mu i(j) \subseteq \{ 1, . . . , | B|  - 1\} , such that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

3/
23

 to
 1

31
.1

88
.6

.1
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 109

zi,j = yi,\mu i(j) and

\{ 0 = zi,0 < zi,1 < \cdot \cdot \cdot < zi,mi
= 1\} = \{ 0 = yi,0 \leq yi,1 \leq yi,2 \leq \cdot \cdot \cdot \leq yi,| B| = 1\} .

Notice that mi \leq | B| . Given the ``guessing"" in the current step, we let Li,j , Ri,j

denote the left and right, respectively, endpoints of the subinterval in which the jth
effective break point of player i lies; i.e., zi,j \in [Li,j , Ri,j ]. For ease of notation, we
also use the shortcut bi,j

\prime = b\mu i(j) for the jth effective bid of player i.
Again, since | B| is constant, we can enumerate over all possible effective jump

point subsequences \mu i in constant time and for each such subsequence, we proceed to
the next step.

Step 3: Solving a system of polynomial inequalities. From the previ-
ous two steps we have, for each bidder i, an assignment of effective jump points
zi,0, . . . , zi,mi to intervals [x\ell  - 1, x\ell ]. In particular, zi,j is mapped to [Li,j , Ri,j ]. Be-
low, we express all the properties that must be satisfied by the effective jump points
at an (exact) BNE of the FPA as a system of polynomial inequalities; the system
includes inequalities to ensure that

- the positions of the jump points of each bidder i respect the ordering implied
by the set of indices, i.e., zi,j - 1 < zi,j for all j = 1, . . . ,mi;

- the bidding strategies are nonoverbidding;
- the variables zi,j indeed correspond to jump points of best-responses, in terms
of the implications to the utility functions.

zi,j - 1 < zi,j \forall i, \forall j,(6.2)

Lij \leq zi,j \leq Rij \forall i, \forall j,(6.3)

zi,j \geq b\prime i,j \forall i, \forall j,(6.4)

ui(b
\prime 
i,j , \bfitz  - i; zi,j) \geq ui(b, \bfitz  - i; zi,j) \forall i, \forall j, \forall b < b\prime i,j ,(6.5)

ui(b
\prime 
i,j - 1, \bfitz  - i; zi,j) \geq ui(b, \bfitz  - i; zi,j) \forall i, \forall j, \forall b > b\prime i,j - 1.(6.6)

Lemma 6.2. Fix a bidder i and a bid b \in B. Then, for every j = 1, . . . ,mi, her
utility ui(b, \bfitz  - i; zi,j) can be expressed (in polynomial time) as a polynomial of degree
at most dn with respect to the effective jump point variables \{ z

i
\prime 
,j
\prime \} 

i
\prime \in N, j

\prime 
=0,...,mi

.

Proof. Without loss of generality, similar to what we did in the proof of Lemma
3.2, we will show the lemma from the perspective of bidder n. Fix an index j =
0, . . . ,mn for an effective jump point zn,j \in [Ln,j , Rn,j ] and consider a bid b. Then,
importing some notation from our proof of Lemma 3.2, the utility of player n when
she has a true value of vn = zn,j is

un(b, \bfitz  - n; zn,j) = Hn(b, \bfitz  - n)(zn,j  - b),

where Hn(b, \bfitz  - n) is the probability that bidder n wins the item. Due to (3.3) and
(3.4) (and the fact that n is now constant), it is enough to show that, for any bidder
i \leq n  - 1, the quantities Gi,b - and gi,b, defined in the proof of Lemma 3.2, are
polynomials of the jump point variables z

i
\prime 
,j
\prime . Furthermore, to guarantee a maximum
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110 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS

degree of dn, as in the statement of our lemma, it is enough to show that each of these
polynomials are of degree at most d: the number of factors in the products appearing
as summands in (3.4) are at most n.

Recall that Gi,b - and gi,b are the probabilities (from the perspective of bidder n)
that bidder i bids below b and exactly b, respectively. So, if b = b\prime 

i,j
\prime for some index

j\prime = 0, 1, . . . ,mi  - 1, then Gi,b - = Fn,j(zi,j\prime ) and gi,b = Fn,j(zi,j\prime +1
)  - Fn,j(zi,j\prime ).

If, on the other hand, b\prime 
i,j

\prime < b < b\prime 
i,j

\prime 
+1

for an index j\prime , then Gi,b - = Fn,j(zi,j\prime )
and gi,b = 0. In any case, deploying the representation from (6.1), quantities Gi,b - 

and gi,b can indeed be written (in polynomial time with respect to the input of the
problem) as polynomials, of degree at most d, of the jump point variables.

As the following lemma suggests, a solution to system (6.2)--(6.6) corresponds
to a BNE of the first-price auction. Note that although the existence of a BNE is
guaranteed by Theorem 4.1, it might be the case that the equilibrium strategies are
not consistent with the specific ``preliminary"" guesses of Steps 1 and 2 that gave rise
to the particular instantiation of system (6.2)--(6.6) above. However, there has to
exist some guess for which the system has a solution, and since we are enumerating
over all possible choices, we are guaranteed to find it.

Lemma 6.3. Given the ``guessed"" allocations of jump points to intervals and the
``guessed"" effective jump points and bids, a compatible BNE of the FPA exists if and
only if system (6.2)--(6.6) has a solution.

Proof. The proof is immediate by the characterization of BNE in Lemma 3.1
(using \varepsilon = 0), by setting \alpha i(b

 - ) = zi,j in condition (3.1) and \alpha i(b) = zi,j in (3.2).

Step 4: ``Projecting"" back to the equilibrium domain. From Step 3 above,
we know that by solving system (6.2)--(6.6), we can compute an exact BNE of the
auction. More precisely, we can compute a \delta -approximation to system (6.2)--(6.6) in
time polynomial in log(1/\delta ) by making use of the following result by Grigor'ev and
Vorobjov [36, remark on p. 38].

Theorem 6.4. For any \delta \in (0, 1], it is possible to find a rational \delta -approximation
to system (6.2)--(6.6) in time polynomial in log(1/\delta ) and the size of the input.

By \delta -approximation here, we mean a point which is geometrically close, with
respect to the max norm, to an exact solution of system (6.2)--(6.6). This is almost a
strong approximation to an exact BNE; if we were to translate this point to a feasible
strategy profile, it would yield jump points which are close to the jump points of
an exact equilibrium strategy. However, these would only approximately satisfy the
conditions in system (6.2)--(6.6); in particular special care should be taken for the
monotonicity and nonoverbidding conditions, which we want to be satisfied exactly
rather than approximately.

To remedy this, we must first ``project"" the \delta -approximate solution of system
(6.2)--(6.6) back to the equilibrium domain \scrD introduced in the proof of Theorem 4.1.
Formally, let us denote by \bfitz the \delta -approximate solution of system (6.2)--(6.6), and by
\bfitz \ast the exact solution which it approximates, so that \| \bfitz  - \bfitz \ast \| \infty \leq \delta . We compute the
projection \~\bfitz from \bfitz as

\~zi,0 = 0 and \~zi,j = T
[max\{ b\prime i,j ,\~zi,j - 1\} ,1](zi,j).

Our next claim is that \| \~\bfitz  - \bfitz \ast \| \infty \leq \delta as well. This is equivalent to saying that
| \~zi,j  - z\ast i,j | \leq \delta for every i, j, which can be done by induction on j, the base case j = 0
being trivial. For j > 0, observe that \~zi,j must coincide with one of b\prime i,j , \~zi,j - 1, 1, zi,j .
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 111

\bullet If \~zi,j = zi,j , then obviously | \~zi,j  - z\ast i,j | \leq \delta .
\bullet If \~zi,j = b\prime i,j , then we must have had zi,j \leq b\prime i,j . Since z\ast i,j \geq b\prime i,j and

| zi,j  - z\ast i,j | \leq \delta , we must also have | \~zi,j  - z\ast i,j | \leq \delta .
\bullet Similarly, if \~zi,j = 1, then we must have had zi,j \geq 1. Since z\ast i,j \leq 1 and

| zi,j  - z\ast i,j | \leq \delta , we must also have | \~zi,j  - z\ast i,j | \leq \delta .
\bullet Finally, suppose \~zi,j = \~zi,j - 1. Then we must have had zi,j \leq \~zi,j - 1. Using

the induction hypothesis, we have that \~zi,j - 1 \leq z\ast i,j - 1 + \delta \leq z\ast i,j + \delta ; thus we
also have | \~zi,j  - z\ast i,j | \leq \delta .

Therefore, \~\bfitz constitutes a valid monotone nondecreasing, nonoverbidding joint
strategy profile, which is within distance \delta of the exact BNE \bfitz \ast . In other words, \~\bfitz is
a valid joint strategy profile that is a strong \delta -approximation to a BNE.

Finally, we need to show that if \delta is chosen to be sufficiently small, then any
strong \delta -approximate BNE is also an \varepsilon -BNE of the auction. For this, we use the fact
that the family of piecewise polynomial distributions is polynomially continuous (see
Appendix A for the formal definition). Indeed, given such a piecewise polynomial
distribution, it is easy to see that it must be Lipschitz-continuous, and, crucially, we
can in polynomial time compute a corresponding Lipschitz-constant. (Note that any
polynomial function F (zj) = a0 + a1zj + \cdot \cdot \cdot + adz

d
j\Lambda is L-Lipschitz-continuous over

[0, 1], where L = | a1| + 2| a2| + \cdot \cdot \cdot + d| ad| .) With this observation in hand, we can
now use Lemma 4.3 to efficiently construct \delta > 0 sufficiently small such that for all
i \in N , b \in B, and vi \in [0, 1]

\| \bfitz  - \bfitz \prime \| \infty \leq \delta =\Rightarrow | ui(b, \bfitz  - i; vi) - ui(b, \bfitz 
\prime  - i; vi)| \leq \varepsilon /2.

Since \~\bfitz is a strong \delta -approximation, i.e., \| \~\bfitz  - \bfitz \ast \| \infty \leq \delta , it immediately follows that
inequalities (6.5) and (6.6) of the system are satisfied with additive error at most \varepsilon .
Using Lemma 3.1, it immediately follows that \~\bfitz is an \varepsilon -BNE.

As a result, to summarize, given \varepsilon > 0 and the problem instance, we can in
polynomial time compute \delta > 0 such that running the algorithm described in this
section is guaranteed to find an \varepsilon -BNE. Since the number of agents and bids is fixed,
and the algorithm runs in polynomial time in log(1/\delta ) and the instance size, Theorem
6.1 follows.

7. Conclusion and future directions. In this paper, we have classified the
complexity of computing a Bayes--Nash equilibrium of the first-price auction with
subjective priors by proving that it is PPAD-complete. As we explained in the in-
troduction, our result contributes fundamentally to our understanding of this cele-
brated auction format, as well as the literature on total search problems and TFNP.
The challenging next step is to move towards the special case of the common pri-
ors assumption, where the value distribution of each bidder is common knowledge
(Fi,j = F

i
\prime 
,j
for all i, i\prime ). Our PPAD-membership result obviously already extends to

this case, as it is a special case of the subjective priors setting. The really intriguing
question is to extend our PPAD-hardness result to this case as well. To this end, we
state the following open problem, which we consider to be one of the most important
problems both in computational game theory and in the literature of total search
problems.

Open problem. What is the complexity of computing an \varepsilon -Bayes--Nash equi-
librium of the first-price auction with common priors? Is it PPAD-complete? Is it
polynomial-time solvable? Or could it be complete for some other (smaller) subclass
of PPAD?
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112 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS

A potential candidate for such a smaller class could be the class PPAD \cap PLS,
which was recently shown by Fearnley et al. [25] and Babichenko and Rubinstein [2]
to capture the complexity of interesting problems related to optimization via gradient
descent, and to compute mixed Nash equilibria in congestion games [66], respec-
tively. The class PLS was introduced by Johnson, Papadimitriou, and Yannakakis
[41] and captures the computation of local minima of some objective function, and
notably characterizes the complexity of finding pure Nash equilibria in congestion
games [24].

A possible ``intermediate"" step before settling the open problem above for common
priors would be to consider priors that are still subjective, but consistent , meaning
that there exists some common prior distribution P (a ``ground truth"") over the
set of value profiles, such that each bidder's subjective prior distribution given her
own value can be directly computed from P . As Myerson [57, section 2.8] argues,
when the subjective priors are consistent, the differences in beliefs can be explained
by differences in information, rather than differences in opinion (which are captured
even by inconsistent beliefs). In settings like the first-price auction, it is meaningful
to assume that beliefs are often formed based on observing public signals (e.g., the
bidding history of the competitors), possibly with varying degrees of information, and
hence subjective priors are quite meaningful.

Another very interesting question is to study the case where both the value distri-
butions and the bidding space are discrete. A special case of this setting was studied
by Escamocher et al. [22], but they only obtained conclusive results for the case of
two bidders with bivalued distributions. We believe that some of our technical con-
tributions (e.g., the computation of the best response functions or the gadgets used
in the PPAD-hardness proof) can be adapted to show similar results for that case
as well; we leave the details for future work. Finally, it would be very interesting to
identify further (in)tractable special cases for our problem; for example, can we obtain
a positive result similar to Theorem 6.1 for more general value distributions? Do the
hardness results also hold in the setting where the number of bidders is constant, but
the bidding space is allowed to be large?

Appendix A. The input model for the value distributions. Let \scrF be a
class of cumulative distribution functions on the interval [0, 1]. In other words, for
any F \in \scrF and any x \in [0, 1], F (x) is the probability of the interval [0, x] according to
F . For every F \in \scrF , let size(F ) denote the representation size of F , i.e., the number
of bits needed to represent F . (Here we implicitly assume that some representation
scheme is given in the definition of \scrF .)

For any rational number x, let size(x) denote the representation size of x, namely,
the length of the binary representation of the denominator and numerator of x. The
definitions in this section are based on the corresponding notions introduced by Etes-
sami and Yannakakis [23].

Definition A.1. A class of cumulative distribution functions \scrF is polynomially
computable if there exists some polynomial p such that for all F \in \scrF and all rational
x \in [0, 1], F (x) can be computed in time p(size(F ) + size(x)).

In order to guarantee the existence of approximate equilibria with polynomial
representation size we add an extra requirement on \scrF .

Definition A.2. A class of cumulative distribution functions \scrF is polynomially
continuous if there exists some polynomial q such that for all F \in \scrF and all rational
\varepsilon > 0, there exists rational \delta > 0 with size(\delta ) \leq q(size(F ) + size(\varepsilon )) such that
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 113

| F (x) - F (y)| \leq \varepsilon 

for all x, y \in [0, 1] with | x - y| \leq \delta .

Note that distribution functions given by piecewise-constant density functions on
the interval [0, 1] are an example of such a class of polynomially computable and
polynomially continuous \scrF . The density functions are represented explicitly, i.e., as a
list of ``blocks,"" where for every block we give the subinterval of [0, 1] that it occupies
and the height of the block.

Appendix B. Impossibilities for implicit bidding spaces. In section 2, we
emphasized that it is necessary for our computational problem to have the bidding
space explicitly as part of the input, as otherwise it is hard to even compute the best
responses of the auction. We provide more details on this topic in this section.

If the bidding space B \subseteq [0, 1] is discrete but represented in some implicit way, this
immediately gives rise to some computational obstacles. When we proved in section 3
that best-responses could be computed efficiently, our procedure essentially goes over
all possible bids and checks which bid achieves the highest utility. If the bidding space
is large (say, exponential in the input size), this approach is no longer efficient. In
fact, in this subsection we will prove that, essentially, one cannot hope to find a better
approach; in particular, we provide lower bounds from an information-theoretical as
well as a computational perspective.

For simplicity, in this subsection we will assume that the bidding space is the set
of all rational numbers in [0, 1] that have denominator 2m,

B =
\Bigl\{ p

2m
| 0 \leq p \leq 2m

\Bigr\} 
,

where m is part of the input and given in unary representation. Notice that each bid
can then be encoded by a binary string of size m (with the exception of the bid 1,
which can be encoded with m+ 1 bits). We will also assume that there are only two
bidders, each having a valuation over the unit interval, V = [0, 1]. This is arguably
the simplest natural example one could consider.

As we explained in section 2 we can identify a strategy by its set of jump points

\alpha i(b) = sup\{ v | \beta i(v) \leq b\} .
Intuitively, \alpha i(b) is the largest value for which player i would bid b or lower. At this
point we have two options on how to represent the functions \alpha i:

- Black-box model: in the black-box model we have access to an oracle that,
given a bid b \in B, returns the corresponding jump point \alpha i(b).

- White-box model: in the white-box model we have an algorithm that, given
a bid b \in B, computes the jump point \alpha i(b). For example, this could be given
by a circuit. Alternatively, we can assume that \alpha i is a function computable
in polynomial time.

In both cases we need to describe how the jump points themselves are represented.
For simplicity, we just assume that all jump points are rational quantities (as we are
going for a hardness result).

Besides the inverse bidding strategies, we also need to represent the cumulative
density functions Fi : [0, 1] \rightarrow [0, 1]. Here similar considerations apply, or we can use
the notions in Appendix A.

Now, given Fi and \alpha i, an important quantity of interest is

\Pi i(b) = Fi(\alpha i(b));
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since \alpha i(b) is the largest value for which bidder i will bid b or lower, and Fi(\alpha i(b))
is the probability that bidder i's valuation is at most this value, it turns out that
\Pi i(b) can be very naturally interpreted as the probability that player i bids on or
below b. Notice that we can then get the probability that player i bids exactly b as
\Pi i(b)  - \Pi i(b

 - ), where b - is the bid immediately below b, for b > 0. Regarding the
computation of \Pi i, it will be either a black-box or white-box computation, depending
on whether we have assumed \alpha i and Fi to be given in a black-box or white-box fashion.

As we already mentioned, in our reduction we will consider only two bidders. We
shall fix the second bidder's bidding strategy and cumulative distribution function
throughout the reduction and look at the best-response of bidder 1. For ease of
notation, we will drop the subscript 2 and write \alpha , F,\Pi instead of \alpha 2, F2,\Pi 2; there
will be no confusion since we will never look at bidder 1's valuation distribution or
bidding strategy. Given a bid b, we can express the probability that bidder 1 wins
the auction when bidding b, denoted by H(b), via

H(0) =
1

2
\Pi (0);

H(b) = \Pi (b - ) +
1

2

\bigl( 
\Pi (b) - \Pi (b - )

\bigr) 
=

1

2

\bigl( 
\Pi (b - ) + \Pi (b)

\bigr) 
for b > 0.

Finally, we wish to maximize the utility of bidder 1; when she has a valuation of v
and bids b, this is given by u(v, b) = H(b)(v  - b).

Now that we have given the preliminaries of our reduction, let us go into the
construction. Let us fix some m \geq 3 and define a baseline instance. We will want
to choose a bidding strategy \alpha and distribution F for bidder 2, so that the resulting
function \Pi (\cdot ) is given as follows:

\Pi (0) = \Pi (2 - m) = \Pi (2 \cdot 2 - m) = 0;

\Pi (b - 2 - m) = \Pi (b) = \Pi (b+ 2 - m) = \Pi (b+ 2 \cdot 2 - m)

=
1

2(1 - b)
for b = p \cdot 2 - m, p a multiple of 4, and b \leq 1

2
;

\Pi (b) = 1 for b \geq 1

2
.

Our function \Pi essentially corresponds to a discrete probability distribution on
the bids with the following properties. First, it only has mass at points of the form
(4k  - 1) \cdot 2 - m for positive integer k, where 4k  - 1 < 2m - 1. Second, the mass at
3 \cdot 2 - m equals 1

2(1 - 4\cdot 2 - m) , whereas for k \geq 2 the mass at (4k  - 1) \cdot 2 - m equals
1

2(1 - 4k\cdot 2 - m)  - 1
2(1 - (4k - 1)\cdot 2 - m) . To yield the desired \Pi , we can, for example, take

F (x) = x, corresponding to the uniform distribution on [0, 1], and \alpha (b) = \Pi (b) defined
as above.

Given the probability distribution \Pi on the bids of player 2, we are interested in
computing the best-response strategy for player 1. In fact, we will do so for the case
that player 1's valuation equals 1. If we can show it is hard to compute the best-
response for this value, then it follows that it is hard to compute the best-response
strategy function in general. Using the definition of H(b), we can write

H(0) = 0; H(2 - m) = 0; H(2 \cdot 2 - m) = 0; H(3 \cdot 2 - m)
1

4(1 - 4 \cdot 2 - m)
;

for b = p \cdot 2 - m, p a multiple of 4, and b \leq 1
2  - 4 \cdot 2 - m,

H(b) =
1

2(1 - b)
; H(b+ 2 - m) =

1

2(1 - b)
; H(b+ 2 \cdot 2 - m) =

1

2(1 - b)
;
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b1/2 1

H(b)

1

Fig. 6: Depiction of the baseline construction. H(b) denotes the probability of player
1 winning the auction when bidding b, and is represented by the blue circles. We also
plot in dashed line the auxiliary function x \mapsto \rightarrow 1

2(1 - x) .

(4k  - 1) \cdot 2 - m, for positive integer k, where 4k  - 1 < 2m - 1. Second, the mass at
3 \cdot 2 - m equals 1

2(1 - 4\cdot 2 - m) , whereas for k \geq 2 the mass at (4k  - 1) \cdot 2 - m equals
1

2(1 - 4k\cdot 2 - m) - 1
2(1 - (4k - 1)\cdot 2 - m) . To yield the desired \Pi , we can for example take F (x) =

x, corresponding to the uniform distribution on [0, 1], and \alpha (b) = \Pi (b) defined as
above.

Given the probability distribution \Pi on the bids of player 2, we are interested in
computing the best-response strategy for player 1. In fact, we will do so for the case
that player 1's valuation equals 1. If we can show it is hard to compute the best-
response for this value, then it follows that it is hard to compute the best-response
strategy function in general. Using the definition of H(b), we can write

H(0) = 0; H(2 - m) = 0; H(2 \cdot 2 - m) = 0; H(3 \cdot 2 - m)
1

4(1 - 4 \cdot 2 - m)
;

for b = p \cdot 2 - m, p a multiple of 4, and b \leq 1
2  - 4 \cdot 2 - m,

H(b) =
1

2(1 - b)
; H(b+ 2 - m) =

1

2(1 - b)
; H(b+ 2 \cdot 2 - m) =

1

2(1 - b)
;

H(b+ 3 \cdot 2 - m) =
1

4(1 - b)
+

1

4(1 - b - 4 \cdot 2 - m)
;

finally, for b \geq 1/2,

H(b) = 1.

A graphical depiction of H(b) can be found in Figure 6. It is not hard to check
that, for every bid b, we have that

H(b) \leq 1

2(1 - b)
;

Fig. 6. Depiction of the baseline construction. H(b) denotes the probability of player 1 winning
the auction when bidding b and is represented by the blue circles. We also plot in dashed line the
auxiliary function x \mapsto \rightarrow 1

2(1 - x)
.

H(b+ 3 \cdot 2 - m) =
1

4(1 - b)
+

1

4(1 - b - 4 \cdot 2 - m)
;

finally, for b \geq 1/2,

H(b) = 1.

A graphical depiction of H(b) can be found in Figure 6. It is not hard to check
that, for every bid b, we have that

H(b) \leq 1

2(1 - b)
;

moreover, this is achieved with equality for every bid of the form b = p \cdot 2 - m, for p a
multiple of 4, as long as b \leq 1/2. Therefore, the maximum utility that player 1 can
achieve is 1/2, and all such multiple-of-four bids are equally best-responses.

Now that we understand the baseline instance, we can construct a family of
``perturbed"" instances that will be used in our reduction. For a fixed subset S \subseteq 
\{ 0, 1\} m - 3 of binary strings of size m  - 3, we will define a corresponding \Pi S , HS as
follows. \Pi S and HS coincide with \Pi and H on every bid b \geq 1/2. For bids smaller
than 1/2, we can write their binary expansion as a sequence of m bits, the first of
which is 0. For example, if m = 4, then the bid 3/24 can be written as 0011. For
every x \in \{ 0, 1\} m - 3, if x \not \in S, then \Pi S and HS coincide with \Pi and H for bids of the
form 0xb1b2; in particular, if b = x \cdot 2m - 2,

\bullet if x = 0 \cdot \cdot \cdot 0, then we have \Pi S(0) = 0, \Pi S(2
 - m) = 0, \Pi S(2 \cdot 2 - m) = 0,

\Pi S(3 \cdot 2 - m) = 1
2(1 - 4\cdot 2 - m) ;

\bullet otherwise, we have \Pi S(b) =
1

2(1 - b) , \Pi S(b+2 - m) = 1
2(1 - b) , \Pi S(b+2 \cdot 2 - m) =

1
2(1 - b) , \Pi S(b+ 3 \cdot 2 - m) = 1

2(1 - b - 4\cdot 2 - m) .

On the other hand, for x \in S and b = x\cdot 2 - m+2, \Pi S is obtained from \Pi by shifting
the mass at b+ 3 \cdot 2 - m to b+ 2 - m; in other words,

\bullet if x = 0 \cdot \cdot \cdot 0, then we have \Pi S(0) = 0, \Pi S(2
 - m) = 1

2(1 - 4\cdot 2 - m) , \Pi S(2 \cdot 2 - m) =
1

2(1 - 4\cdot 2 - m) , \Pi S(3 \cdot 2 - m) = 1
2(1 - 4\cdot 2 - m) ;
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0x00 0x01 0x10 0x11 0x+00

H(b)HS(b)

Fig. 7: Depiction of the baseline construction. HS(b) denotes the probability of player
1 winning the auction when bidding b, and is represented by the upper blue circles.
These are higher than the probabilities in H(b) (lower blue circles), and go above
the function x \mapsto \rightarrow 1

2(1 - x) (dashed line). Here 0x+00 represents the binary string

immediately after 0x11.

black-box model. Then, any algorithm that computes \varepsilon -best-responses, for \varepsilon \leq 2 - m,
makes an exponential number of queries in the worst-case.

Proof. Let A be an algorithm that computes exact best-responses. Fix an integer
m \geq 3, the number of players to be 2, and run the algorithm A for the baseline
instance, where player 2 bids according to function H, and player 1's value is fixed to
1. Suppose that A makes less than 2m - 3 - 1 queries; let Q be the set of queries made
by A, and b be the bid returned by A. Next, notice that there are 2m - 3 disjoint sets
of bids of the form \{ 0x01, 0x10, 0x11\} , one for each x \in \{ 0, 1\} m - 3. Since A makes
less than 2m - 3  - 1 queries, it follows that there must exist some x for which none
of 0x01, 0x10, 0x11 belongs to Q \cup \{ b\} . Now consider the perturbed instance Hx,
that is, we take S = \{ x\} . Notice that HS and \Pi S coincide with H and \Pi everywhere
except at \{ 0x01, 0x10, 0x11\} ; therefore, running A on the instance Hx would produce
the same answers on all queries, and so would produce the same best-response bid of
b. However, by our construction we know that bidding b gives an utility of at most
1/2, whereas bidding according to the string 0x1 gives an utility strictly higher than
1/2 + \varepsilon . Hence, the algorithm would not give a correct answer. We conclude that
any algorithm for computing best-responses would have to make at least 2m - 3  - 1
queries.

Theorem B.2. Consider a FPA where the bidding space corresponds to all dyadic
rationals of order m, and bidding strategies are represented implicitly according to the
white-box model. Then, computing \varepsilon -best-responses, for exponentially small \varepsilon , is an
NP-hard optimization problem.

Proof. Let \scrP be any problem in NP. Without loss of generality assume that
certificates for instances of size n must all have size p(n), for some polynomial p.
Given an input y for \scrP , let S(y) = \{ x \in \{ 0, 1\} p(n) : x is a valid certificate for y\} \subseteq 
\{ 0, 1\} p(n) be the set of valid certificates for y. In other words, y is a yes-instance if and
only if S(y) \not = \emptyset ; and there is a polynomial-time algorithm that, given x, y, decides
whether x \in S(y).

We can define our reduction, from \scrP to the problem of computing best-responses,
as follows. Given an input y of size n, consider a first-price auction where:

Fig. 7. Depiction of the baseline construction. HS(b) denotes the probability of player 1 winning
the auction when bidding b and is represented by the upper circles. These are higher than the
probabilities in H(b) (lower circles) and go above the function x \mapsto \rightarrow 1

2(1 - x)
(dashed line). Here

0x+00 represents the binary string immediately after 0x11.

\bullet otherwise, we have \Pi S(b) =
1

2(1 - b) , \Pi S(b + 2 - m) = 1
2(1 - b - 4\cdot 2 - m) , \Pi S(b + 2 \cdot 

2 - m) = 1
2(1 - b - 4\cdot 2 - m) , \Pi S(b+ 3 \cdot 2 - m) = 1

2(1 - b - 4\cdot 2 - m) .
This gives rise to a change in HS as well:

\bullet if x = 0 \cdot \cdot \cdot 0, then we have HS(0) = 0, HS(2
 - m) = 1

4(1 - 4\cdot 2 - m) , HS(2 \cdot 2 - m) =
1

2(1 - 4\cdot 2 - m) , HS(3 \cdot 2 - m) = 1
2(1 - 4\cdot 2 - m) ;

\bullet otherwise, we have HS(b) = 1
2(1 - b) , HS(b + 2 - m) = 1

4(1 - b) +
1

4(1 - b - 4\cdot 2 - m) ,

HS(b+ 2 \cdot 2 - m) = 1
2(1 - b - 4\cdot 2 - m) , HS(b+ 3 \cdot 2 - m) = 1

2(1 - b - 4\cdot 2 - m) .
Similarly as above, we can define an \alpha S for player 2 that gives rise to this choice

of \Pi S and HS . The net effect of our construction is that, for x \not \in S, the bids of
the form 0x00, 0x01, 0x10, and 0x11 achieve the same utility in both the baseline
and the perturbed instances (and thus at most 1/2); but if x \in S, the bids of the
form 0x01, 0x10, 0x11 now achieve higher utility; in fact, if x \in S, then bidding
0x10 achieves a utility strictly higher than 1/2. Writing b = x \cdot 2 - m+2, we can see
that

u(1, b+ 2 \cdot 2 - m) =
1 - b - 2 \cdot 2 - m

2(1 - b - 4 \cdot 2 - m)
>

1

2
.

We want to find an \varepsilon that bounds the utility gap, in order to show that computing
\varepsilon -best-responses is hard. Using the trivial bound that 1  - b  - 4 \cdot 2 - m < 1, it turns
out that \varepsilon \leq 2 - m is small enough:

u(1, b+ 2 \cdot 2 - m) - 1

2
=

1 - b - 2 \cdot 2 - m

2(1 - b - 4 \cdot 2 - m)
 - 1 - b - 4 \cdot 2 - m

2(1 - b - 4 \cdot 2 - m)
=

2 \cdot 2 - m

2(1 - b - 4 \cdot 2 - m)

> 2 - m.

We can depict the change from function H to function HS as in Figure 7. To
conclude this section, we just need to prove that one cannot distinguish between H
and HS unless we explicitly compute utilities for a large number possible bids.

Theorem B.1. Consider an FPA where the bidding space corresponds to all
dyadic rationals of order m, and bidding strategies are represented implicitly according
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 117

to the black-box model. Then any algorithm that computes \varepsilon -best-responses, for \varepsilon \leq 
2 - m, makes an exponential number of queries in the worst case.

Proof. Let A be an algorithm that computes exact best-responses. Fix an integer
m \geq 3, the number of players, to be 2 and run the algorithm A for the baseline
instance, where player 2 bids according to function H, and player 1's value is fixed at
1. Suppose that A makes fewer than 2m - 3 - 1 queries; let Q be the set of queries made
by A, and let b be the bid returned by A. Next, notice that there are 2m - 3 disjoint
sets of bids of the form \{ 0x01, 0x10, 0x11\} , one for each x \in \{ 0, 1\} m - 3. Since A makes
fewer than 2m - 3  - 1 queries, it follows that there must exist some x for which none
of 0x01, 0x10, 0x11 belongs to Q \cup \{ b\} . Now consider the perturbed instance Hx,
that is, we take S = \{ x\} . Notice that HS and \Pi S coincide with H and \Pi everywhere
except at \{ 0x01, 0x10, 0x11\} ; therefore, running A on the instance Hx would produce
the same answers on all queries, and so would produce the same best-response bid of
b. However, by our construction we know that bidding b gives a utility of at most
1/2, whereas bidding according to the string 0x1 gives a utility strictly higher than
1/2 + \varepsilon . Hence, the algorithm would not give a correct answer. We conclude that
any algorithm for computing best-responses would have to make at least 2m - 3  - 1
queries.

Theorem B.2. Consider an FPA where the bidding space corresponds to all
dyadic rationals of order m, and bidding strategies are represented implicitly according
to the white-box model. Then computing \varepsilon -best-responses, for exponentially small \varepsilon ,
is an NP-hard optimization problem.

Proof. Let \scrP be any problem in NP. Without loss of generality assume that
certificates for instances of size n must all have size p(n) for some polynomial p.
Given an input y for \scrP , let S(y) = \{ x \in \{ 0, 1\} p(n) : x is a valid certificate for y\} \subseteq 
\{ 0, 1\} p(n) be the set of valid certificates for y. In other words, y is a yes-instance if and
only if S(y) \not = \emptyset , and there is a polynomial-time algorithm that, given x, y, decides
whether x \in S(y).

We can define our reduction, from \scrP to the problem of computing best-responses,
as follows: Given an input y of size n, consider an FPA where

\bullet m = p(n) + 3 and \varepsilon = 2 - m;
\bullet the bidding space corresponds to all dyadic rationals of order m;
\bullet there are two players; the second player has a bidding distribution according

to the perturbed instance HS(y);
\bullet the first player has a valuation of 1.
Notice that we can indeed construct this auction in polynomial time. In par-

ticular, there is an algorithm that computes \Pi S(y)(b) as follows. If b \geq 1/2, then
\Pi S(y)(b) = 1. Otherwise, write b in the form 0xb1b2; decide whether x \in S(y) (in
polynomial time); depending on the answer, compute \Pi S(y)(b) according to the for-
mulas above.

To complete the proof, suppose y is a no-instance. Then \Pi S(y) = \Pi \emptyset = \Pi , and the
best-response for player 1 in this auction must achieve utility of exactly 1/2, so that
any \varepsilon -best-response achieves utility at most 1/2. On the other hand, suppose y is a
yes-instance. Then S(y) \not = \emptyset , and the best-response for player 1 in this auction must
achieve utility strictly higher than 1/2 + 2 - m, so that any \varepsilon -best-response achieves
utility strictly higher than 1/2.

Appendix C. Exact equilibria can be irrational. In this section we pro-
vide the technical details on Example 2.2, which shows that an FPA can have only
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irrational equilibria. Recall that in section 2 we imposed two standard assumptions
from the literature, namely, that equilibrium strategies are monotone nondecreasing
and exhibit no overbidding . Here, since we would like to argue that all equilibria are
irrational, to make our statement even stronger, we will show that in the example
that we construct, all equilibria are necessarily monotone non decreasing and non
overbidding, as well as irrational. In fact, we will show that the example admits a
unique equilibrium, and that this equilibrium has all three properties.

To this end, we start with the following proposition, which states that essentially
violations of overbidding and monotonicity only occur in trivial corner cases. In our
subsequent construction, such cases will not occur.

Proposition C.1. Let \bfitbeta be an exact equilibrium of an FPA. For a bid bi by
player i, let Hi(bi,\bfitbeta  - i) denote the (perceived) probability that player i gets the item,
given this bid and the bidding strategies by the other players. Then strategies will
always be nonoverbidding and monotone nondecreasing except possibly only when the
probability of winning is zero. Formally,

1. let vi be a valuation by player i and bi = \beta i(vi); if bi > vi, then Hi(bi,\bfitbeta  - i) =
0;

2. let vi, v
\prime 
i be valuations by player i and bi = \beta i(vi), b

\prime 
i = \beta i(v

\prime 
i); if vi < v\prime i and

bi > b\prime i, then Hi(bi,\bfitbeta  - i) = Hi(b
\prime 
i,\bfitbeta  - i) = 0.

Proof.

1. If bi > vi and Hi(bi,\bfitbeta  - i) > 0, then player i achieves a strictly negative
utility by bidding bi when her valuation is vi. However, player i could achieve
nonnegative utility by bidding below vi (e.g., by bidding 0). Hence \bfitbeta would
not be an equilibrium.

2. Suppose that vi < v\prime i and bi > b\prime i. As \bfitbeta is an exact equilibrium, we know that
bi, b

\prime 
i are the best bidding responses by player i. In other words, ui(bi,\bfitbeta  - i; vi) \geq 

ui(b
\prime 
i,\bfitbeta  - i; vi) and ui(b

\prime 
i,\bfitbeta  - i; v

\prime 
i) \geq ui(bi,\bfitbeta  - i; v

\prime 
i). Moreover, as bi > b\prime i we also

know that Hi(bi,\bfitbeta  - i) \geq Hi(b
\prime 
i,\bfitbeta  - i). Putting these together, we find that

ui(bi,\bfitbeta  - i;v
\prime 
i) + ui(b

\prime 
i,\bfitbeta  - i; vi)

= (v\prime i  - bi)Hi(bi,\bfitbeta  - i) + (vi  - b\prime i)Hi(b
\prime 
i,\bfitbeta  - i)

= (v\prime i  - vi)Hi(bi,\bfitbeta  - i) + (vi  - bi)Hi(bi,\bfitbeta  - i) + (vi  - b\prime i)Hi(b
\prime 
i,\bfitbeta  - i)

\geq (v\prime i  - vi)Hi(b
\prime 
i,\bfitbeta  - i) + (vi  - bi)Hi(bi,\bfitbeta  - i) + (vi  - b\prime i)Hi(b

\prime 
i,\bfitbeta  - i)

= (v\prime i  - b\prime i)Hi(b
\prime 
i,\bfitbeta  - i) + (vi  - bi)Hi(bi,\bfitbeta  - i)

= ui(b
\prime 
i,\bfitbeta  - i; v

\prime 
i) + ui(bi,\bfitbeta  - i; vi).

From this, we conclude that all steps in the above derivation must hold
with equality, implying that ui(bi,\bfitbeta  - i; vi) = ui(b

\prime 
i,\bfitbeta  - i; vi), ui(b

\prime 
i,\bfitbeta  - i; v

\prime 
i) =

ui(bi,\bfitbeta  - i; v
\prime 
i), and Hi(bi,\bfitbeta  - i) = Hi(b

\prime 
i,\bfitbeta  - i). But then 0 = ui(b

\prime 
i,\bfitbeta  - i; vi)  - 

ui(bi,\bfitbeta  - i; vi) = (bi - b\prime i)Hi(bi,\bfitbeta  - i). As bi > b\prime i we conclude thatHi(bi,\bfitbeta  - i) =
Hi(b

\prime 
i,\bfitbeta  - i) = 0.

We are now ready to proceed with the example showing that all equilibria of the
FPA can be irrational. Consider an FPA with n = 3 bidders and common priors,
whose valuations are independently and identically distributed according to the uni-
form distribution on [0, 1]; that is, Fi(x) = x for i = 1, 2, 3. Let the bidding space
be B = \{ 0, 1/2\} . Clearly, this auction can be represented with piecewise-constant
density functions (with a single piece) and with a finite number of rational quantities.
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 119

We shall show that the auction has a unique equilibrium, and that this equilibrium is
described by an irrational jump point.

First observe that, at an exact equilibrium, the probability of a player winning
when bidding 0 is positive. Otherwise, one of the other players would be bidding 1/2
with probability 1 and would achieve expected negative utility when having a valuation
in [0, 1/2), which contradicts the best-response conditions. Since the probability of
winning is never zero, Proposition C.1 implies that any equilibrium must consist of
nonoverbidding, monotone nondecreasing strategies. In particular, the best-response
strategy of player i can be described by a single jump point ai, that is,

\beta i(x) =

\biggl\{ 
0 if 0 \leq x \leq ai;
1/2 if ai < x \leq 1.

Since strategies are nonoverbidding, we must have that 1/2 \leq ai \leq 1. Moreover,
a joint strategy profile can be described by the jump points of each player, which form
a triple (a1, a2, a3).

Next we show that, at an exact equilibrium, each of the ai must be strictly less
than 1. Suppose that bidder 1 has a valuation of v1 and that bidders 2 and 3 have
played according to (a2, a3). This means that bidder 2 bids 0 with probability a2 and
bids 1/2 with probability (1  - a2), and similarly for bidder 3. Thus, the probability
of player 1 winning when bidding 0 or when bidding 1/2 is, respectively,

H(0; a2, a3) =
1

3
a2a3,

H(1/2; a2, a3) = a2a3 +
1

2
a2(1 - a3) +

1

2
(1 - a2)a3 +

1

3
(1 - a2)(1 - a3)

=
1

3
+

1

3
a2a3 +

1

6
a2 +

1

6
a3.

From this we can compute the utility of player 1 when bidding 0 or when bidding 1/2,

u1(v1, 0; a2, a3) =
1

3
a2a3v1,

u1(v1, 1/2; a2, a3) =

\biggl( 
1

3
+

1

3
a2a3 +

1

6
a2 +

1

6
a3

\biggr) \biggl( 
v1  - 

1

2

\biggr) 
.

We can compute the jump point v1 for which player 1 is indifferent between
bidding 0 or bidding 1/2 by solving the equation

u1(v1, 0; a2, a3) = u1(v1, 1/2; a2, a3)

\Rightarrow 1

3
a2a3v1 =

\biggl( 
1

3
+

1

3
a2a3 +

1

6
a2 +

1

6
a3

\biggr) \biggl( 
v1  - 

1

2

\biggr) 

\Rightarrow 2v1 + v1a2 + v1a3 = 1 + a2a3 +
1

2
a2 +

1

2
a3(C.1)

\Rightarrow v1 =
1

2
+

a2a3
2 + a2 + a3

.(C.2)

Next observe that the expression a2a3

2+a2+a3
is increasing in both a2 and a3; hence, by

setting a2 = 1, a3 = 1 we get that the right-hand side of (C.2) is at most 1
2+

1\times 1
2+1+1 = 3

4 .
In other words, the break-even point must occur in the interval [1/2, 3/4], and thus
in particular setting v1 = a1 must give a solution to (C.1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

3/
23

 to
 1

31
.1

88
.6

.1
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



120 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS

Repeating this argument for players 2 and 3 we obtain similarly that a2 and a3
must lie in [1/2, 3/4], and that these jump points must be the solutions of equations
similar to (C.1). In order for (a1, a2, a3) to define an equilibrium, each player's jump
point must be optimal in response to the other players' strategies. Thus, (a1, a2, a3)
must be a solution of the system of equations

2a1 + a1a2 + a1a3 = 1 + a2a3 +
1

2
a2 +

1

2
a3,(C.3)

2a2 + a1a2 + a2a3 = 1 + a1a3 +
1

2
a1 +

1

2
a3,(C.4)

2a3 + a2a3 + a1a3 = 1 + a1a2 +
1

2
a1 +

1

2
a2.

Finally, we show that the above system has a unique solution. By subtracting
(C.4) from (C.3), we get

2(a1  - a2) + a3(a1  - a2) = (a2  - a1)a3 +
1

2
(a2  - a1)

\Rightarrow 
\biggl( 
5

2
+ 2a3

\biggr) 
(a1  - a2) = 0

\Rightarrow a3 =  - 5

4
or a1 = a2.

Since we know that a3 \in [1/2, 3/4], we conclude that a1 = a2. By the same argument,
we must have a2 = a3 and a1 = a3, that is, any equilibrium must be symmetric. Now,
letting a := a1 = a2 = a3, we get that a must be a solution to the equation

2a+ a2 + a2 = 1 + a2 +
1

2
a+

1

2
a

\Rightarrow a2 + a - 1 = 0

\Rightarrow a =
 - 1\pm 

\surd 
5

2
.

Since a must be positive, we conclude that the unique equilibrium of this auction
is given by the jump point a =  - 1+

\surd 
5

2 \approx 0.618 (the inverse of the golden ratio), which
is irrational.

Appendix D. Proof of Lemma 4.3. Since the distributions are polynomially
continuous, it follows that, given any \varepsilon > 0, we can compute \delta > 0 in polynomial time
such that | Fi,j(x)  - Fi,j(y)| \leq \varepsilon /2n+1 for all x, y with | x  - y| \leq \delta and all i, j \in N
(i \not = j).

Consider any \bfitalpha ,\bfitalpha \prime \in \scrD (see the proof of Theorem 4.1) with \| \bfitalpha  - \bfitalpha \prime \| \infty \leq \delta .
Then we have \bigm| \bigm| \bigm| \bigm| Pr

vi\sim Fj,i

[\beta i(vi) \leq b] - Pr
vi\sim Fj,i

[\beta \prime 
i(vi) \leq b]

\bigm| \bigm| \bigm| \bigm| 

\leq 
\bigm| \bigm| \bigm| \bigm| Pr
vi\sim Fj,i

[vi \leq \alpha i(b)] - Pr
vi\sim Fj,i

[vi \leq \alpha i
\prime (b)]

\bigm| \bigm| \bigm| \bigm| 
\leq | Fj,i(\alpha i(b)) - Fj,i(\alpha 

\prime 
i(b))| 

\leq \varepsilon /2n+1

for all i, j \in N (i \not = j) and b \in B. It follows that Prvi\sim Fj,i
[\beta i(vi) < b] differs from

Prvi\sim Fj,i [\beta 
\prime 
i(vi) < b] by at most \varepsilon /2n+1. Similarly, Prvi\sim Fj,i [\beta i(vi) = b] differs from

Prvi\sim Fj,i [\beta 
\prime 
i(vi) = b] by at most \varepsilon /2n.
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 121

Let Ti(b, \ell ;\bfitalpha  - i) denote the probability that, from the perspective of bidder i,
exactly \ell out of the bidders N \setminus \{ i\} bid exactly b, and the remaining n - 1 - \ell bidders
bid below b. We can write

Ti(b, \ell ;\bfitalpha  - i) =
\sum 

S\subseteq N\setminus \{ i\} 
| S| =\ell 

\prod 

k\in S

Pr
vk\sim Fi,k

[\beta k(vk) = b]
\prod 

k\in N\setminus (\{ i\} \cup S)

Pr
vk\sim Fi,k

[\beta k(vk) < b] .

From this it follows that Ti(b, \ell ;\bfitalpha  - i) and Ti(b, \ell ;\bfitalpha 
\prime  - i) differ by at most

\bigl( 
n - 1
\ell 

\bigr) 
n\varepsilon /2n

for all i \in N , b \in B, and \ell \in \{ 0, 1, . . . , n  - 1\} . As defined in section 3, recall that
Hi(b,\bfitalpha  - i) denotes the probability that bidder i wins if she bids b and the other
bidders bid according to \bfitalpha  - i. Then we can write

Hi(b,\bfitalpha  - i) =

n - 1\sum 

\ell =0

1

\ell + 1
Ti(b, \ell ;\bfitalpha  - i).

It follows that Hi(b,\bfitalpha  - i) differs from Hi(b,\bfitalpha 
\prime  - i) by at most

n - 1\sum 

\ell =0

1

\ell + 1

\biggl( 
n - 1

\ell 

\biggr) 
n\varepsilon /2n =

n - 1\sum 

\ell =0

\biggl( 
n

\ell + 1

\biggr) 
\varepsilon /2n \leq \varepsilon 

for all i \in N and b \in B. Finally, note that ui(b,\bfitalpha  - i; vi) = Hi(b,\bfitalpha  - i) \cdot (vi  - b). Thus,
we obtain

| ui(b,\bfitalpha  - i; vi) - ui(b,\bfitalpha 
\prime  - i; vi)| \leq | Hi(b,\bfitalpha  - i) - Hi(b,\bfitalpha 

\prime  - i)| | vi  - b| \leq \varepsilon 

for all i \in N , b \in B, and vi \in [0, 1], since | vi  - b| \leq 1.

Appendix E. PPAD- and FIXP-completeness of generalized circuit
variants.

E.1. PPAD-completeness (proof of Proposition 5.5). Membership in PPAD
follows from the fact that a generalized circuit with gates g1, . . . , gm can be interpreted
as defining an algebraic circuit F : [0, 1]m \rightarrow [0, 1]m, where for x \in [0, 1]m and i \in [m]
we let Fi(x) = G(xj , xk), where gi = (G, j, k). Then it is known that the problem
of computing an \varepsilon -approximate fixed point of such a function F lies in PPAD [23]
(and, in fact, even when \varepsilon is provided in the input in binary representation). Finally,
note that an \varepsilon -approximate fixed point of F exactly corresponds to an \varepsilon -satisfying
assignment for the generalized circuit.

In order to prove PPAD-hardness, consider the \varepsilon -Gcircuit problem with gate
types \scrG = \{ G1 - , G+\} for some sufficiently small constant \varepsilon > 0 (which will be set
later). We begin by showing that additional gate types can be simulated if we allow
a larger (but still constant) error.

\bfitG =: Copy. The goal of such a gate is to copy the value of some gate g1. For
this, we use the fact that 1  - (1  - x) = x. Thus, we introduce a gate g2 of type
G1 - with input g1 and a gate g3 of type G1 - with input g2. It holds that v[g3] =
1 - v[g2]\pm \varepsilon = v[g1]\pm 2\varepsilon . In other words, we can simulate a copy gate with error at
most 2\varepsilon .

\bfitG 1: Constant 1. In order to obtain a gate that has value 1, we use the fact
that x+ (1 - x) = 1. First, we introduce an arbitrary gate g1. Then we introduce a
gate g2 of type G1 - with input g1, and a gate g3 of type G+ with inputs g1 and g2.
It holds that v[g3] = T(v[g1] + v[g2])\pm \varepsilon = 1\pm 2\varepsilon . Thus, we can simulate a constant
1 with error at most 2\varepsilon .
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122 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS

\bfitG  - : Subtraction. The goal of this gate is to compute T(v[g1]  - v[g2]). For
this, we use the identity

T(x - y) = 1 - T
\bigl( 
(1 - x) + y

\bigr) 
,

which allows us to express subtraction using only addition and the complement oper-
ation. With this in hand, we can implement subtraction as follows. We introduce a
gate g3 of type G1 - with input g1, a gate g4 of type G+ with inputs g3 and g2, and
finally a gate g5 of type G1 - with input g4. Then it holds that v[g5] = 1 - v[g4]\pm \varepsilon =
1 - T(v[g3]+v[g2])\pm 2\varepsilon = 1 - T(1 - v[g1]+v[g2])\pm 3\varepsilon = T(v[g1] - v[g2])\pm 3\varepsilon . Thus,
we can simulate a subtraction gate with error at most 3\varepsilon .

\bfitG /2: Division by 2. The goal of this gate is to compute v[g1]/2. This is
achieved by constructing a cycle. Namely, we introduce two gates g2 and g3. The
gate g2 is of type G - with inputs g1 and g3, and the gate g3 is of type G= with input
g2. As a result, it holds that

v[g3] = v[g2]\pm 2\varepsilon = T(v[g1] - v[g3])\pm 5\varepsilon .

From this, it follows that v[g3] = v[g1]/2 \pm 5\varepsilon . To see this, note that if v[g3] \geq 
v[g1], then v[g3] = 0 \pm 5\varepsilon = v[g1]/2 \pm 5\varepsilon , since [0, 5\varepsilon ] \subseteq [v[g1]/2  - 5\varepsilon ,v[g1]/2 + 5\varepsilon ]
(because v[g1]/2 \leq v[g3]/2 \leq 5\varepsilon ). On the other hand, if v[g3] < v[g1], then we
obtain that 2v[g3] = v[g1] \pm 5\varepsilon , which again yields the same conclusion, namely,
v[g3] = v[g1]/2\pm 5\varepsilon . Thus, we can simulate division by 2 with error at most 5\varepsilon .

\bfitG \times \bfitzeta : Multiplication by \bfitzeta \in [0, 1]. If \zeta = 0, then we can simply output
G1 - (G1) = 0\pm 3\varepsilon . If \zeta = 1, we can simply use a G= gate that has error at most 2\varepsilon .
Consider now the case where \zeta \in (0, 1). Let k = \lceil log2(1/\varepsilon )\rceil . Recall that \varepsilon will be a
fixed constant, so k will also be a fixed constant. It is easy to see that in polynomial
time (in the representation size of \zeta ) we can find a \in \{ 1, 2, . . . , 2k  - 1\} such that
| \zeta  - a/2k| \leq \varepsilon .

Let g1 denote the input. Our goal now is to compute (a/2k) \cdot v[g1], since this will
be \varepsilon -close to \zeta \cdot v[g1]. We compute (a/2k) \cdot v[g1] in a careful manner to ensure that
the error remains small. This is achieved as follows. Using the binary representation
of a =

\sum k - 1
i=0 ai2

i, ai \in \{ 0, 1\} , we can express the product (a/2k) \cdot x as

0+a0
x
2

2 +a1
x
2

2 + a2
x
2

. . .

We implement this as follows. First, introduce g2 such that v[g2] = v[g1]/2 \pm 5\varepsilon .
Next, introduce g3 such that (i) if a0 = 0, then v[g3] = 0 \pm 3\varepsilon , (ii) if a0 = 1, then
g3 = g2. In both cases we have

v[g3] = a0v[g2]\pm 3\varepsilon .

Next, introduce g4 such that (i) if a1 = 0, then v[g4] = v[g3]/2\pm 5\varepsilon = a0v[g2]/2\pm 5(1+
1/2)\varepsilon , (ii) if a1 = 1, then v[g4] = v[g3]/2+v[g2]\pm 6\varepsilon = a0v[g2]/2+v[g2]\pm 6(1+1/2)\varepsilon .
In both cases we have
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 123

v[g4] = a0v[g2]/2 + a1v[g2]\pm 6(1 + 1/2)\varepsilon = (a0 + 2a1)v[g2]/2\pm 6(1 + 1/2)\varepsilon .

Next, introduce g5 such that (i) if a2 = 0, then v[g5] = v[g4]/2 \pm 5\varepsilon = (a0 +
2a1)v[g2]/4 \pm 6(1 + 1/2 + 1/4)\varepsilon , (ii) if a2 = 1, then v[g5] = v[g4]/2 + v[g2] \pm 6\varepsilon =
(a0 + 2a1)v[g2]/4 + v[g2]\pm 6(1 + 1/2 + 1/4)\varepsilon . In both cases we have

v[g5] = (a0 + 2a1)v[g2]/4 + a2v[g2]\pm 6(1 + 1/2 + 1/4)\varepsilon 

= (a0 + 2a1 + 4a2)v[g2]/4\pm 6(1 + 1/2 + 1/4)\varepsilon .

Continuing in the same manner, it follows by induction that after k - 1 such steps we
obtain

v[gk+2] =

\Biggl( 
k - 1\sum 

i=0

ai2
i

\Biggr) 
v[g2]/2

k - 1 \pm 12\varepsilon =
a

2k
(2v[g2])\pm 12\varepsilon =

a

2k
v[g1]\pm 22\varepsilon 

= \zeta \cdot v[g1]\pm 23\varepsilon .

Thus, we can compute multiplication by \zeta \in [0, 1] with error at most 23\varepsilon . Note that
this gadget can be constructed in polynomial time in the representation size of \zeta .
Furthermore, the number of gates needed to construct the gadget is O(k), which is
constant, since k = \lceil log2(1/\varepsilon )\rceil and \varepsilon will be a fixed constant.

We are now ready to show PPAD-hardness. To do this, we reduce from a slightly
modified version of Gcircuit studied by Goldberg et al. [33], which we call Gcir-
cuit[ - 1,1]. This modified version operates on [ - 1, 1] instead of [0, 1], and it uses the

gates G
[ - 1,1]
+ , G

[ - 1,1]
1 , and G

[ - 1,1]
\times  - \zeta (where the gates truncate to [ - 1, 1] and \zeta \in [0, 1]).

Goldberg et al. [33] proved that \varepsilon \prime -Gcircuit[ - 1,1] is PPAD-hard for some sufficiently
small constant \varepsilon \prime > 0. We now set \varepsilon := \varepsilon \prime /50. Below, we show that \varepsilon \prime -Gcircuit[ - 1,1]

reduces to \varepsilon -Gcircuit (with gate types \scrG = \{ G1 - , G+\} ).
Given a generalized circuit with gates G

[ - 1,1]
+ , G

[ - 1,1]
1 , and G

[ - 1,1]
\times  - \zeta , we construct a

corresponding circuit with gates G1 - and G+ as follows. Every gate g of the original
circuit is replaced by two gates g+ and g - . The idea is that the value of g, which lies
in [ - 1, 1], will be encoded by the values of g+ and g - , which lie in [0, 1]. Formally,
we interpret v[g] := v[g+] - v[g - ]. Next, we show that the constraints of the original
circuit can be enforced by corresponding constraints on the new circuit.

Simulating \bfitG 
[ - 1,1]
1 . In order to enforce that v[g] = 1\pm \varepsilon \prime , we proceed as follows.

We simply let v[g+] = 1 \pm 2\varepsilon and v[g - ] = 0 \pm 3\varepsilon (using the constructions described
above). Thus, it holds that v[g] = v[g+] - v[g - ] = 1\pm 5\varepsilon = 1\pm \varepsilon \prime .

Simulating \bfitG 
[ - 1,1]
\times  - \bfitzeta . In order to enforce that v[g2] =  - \zeta \cdot v[g1] \pm \varepsilon \prime , for some

\zeta \in [0, 1], we proceed as follows. Using the constructions described above, we can
enforce that v[g+2 ] = \zeta \cdot v[g - 1 ] \pm 23\varepsilon and v[g - 2 ] = \zeta \cdot v[g+1 ] \pm 23\varepsilon . Thus, v[g2] =
 - \zeta \cdot v[g1]\pm 46\varepsilon =  - \zeta \cdot v[g1]\pm \varepsilon \prime .

Simulating \bfitG 
[ - 1,1]
+ . In order to enforce that v[g3] = T[ - 1,1](v[g1] + v[g2])\pm \varepsilon \prime ,

we proceed in two steps. First, using our construction for performing subtraction,
we ``normalize"" the gates by letting v[h+

1 ] = T(v[g+1 ]  - v[g - 1 ]) \pm 3\varepsilon and v[h - 
1 ] =

T(v[g - 1 ] - v[g+1 ])\pm 3\varepsilon , which yields v[h1] = v[g1]\pm 6\varepsilon . We similarly obtain h2 from
g2. This ``normalization"" will ensure that addition is then performed correctly.

In the second step, using the addition gate G+, we let v[g
+
3 ] = T(v[h+

1 ]+v[h+
2 ])\pm \varepsilon 

and v[g - 3 ] = T(v[h - 
1 ] + v[h - 

2 ])\pm \varepsilon . Thus, it holds that

v[g3] = v[g+3 ] - v[g - 3 ] = T(v[h+
1 ] + v[h+

2 ]) - T(v[h - 
1 ] + v[h - 

2 ])\pm 2\varepsilon 

= T[ - 1,1](v[h
+
1 ] + v[h+

2 ]) - T[ - 1,1](v[h
 - 
1 ] + v[h - 

2 ])\pm 2\varepsilon .
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124 FILOS-RATSIKAS, GIANNAKOPOULOS, HOLLENDER, LAZOS, PO\c CAS

Because of the ``normalization"" step, we know that

min\{ v[h+
1 ],v[h

 - 
1 ]\} \leq 3\varepsilon and min\{ v[h+

2 ],v[h
 - 
2 ]\} \leq 3\varepsilon .

In the case where v[h - 
1 ] \leq 3\varepsilon and v[h - 

2 ] \leq 3\varepsilon , it holds that v[h1] = v[h+
1 ] \pm 3\varepsilon and

v[h2] = v[h+
2 ]\pm 3\varepsilon , which implies that

v[g3] = T[ - 1,1](v[h1]+v[h2]) - T[ - 1,1](v[h
 - 
1 ]+v[h - 

2 ])\pm 8\varepsilon =T[ - 1,1](v[h1] + v[h2])\pm 14\varepsilon .

In the case where v[h+
1 ] \leq 3\varepsilon and v[h - 

2 ] \leq 3\varepsilon , it holds that v[h1] =  - v[h - 
1 ]\pm 3\varepsilon and

v[h2] = v[h+
2 ]\pm 3\varepsilon , which implies that

v[g3] = T[ - 1,1](v[h
+
1 ] + v[h2]) - T[ - 1,1]( - v[h1] + v[h - 

2 ])\pm 8\varepsilon 

= v[h1] + v[h2]\pm 14\varepsilon 

= T[ - 1,1](v[h1] + v[h2])\pm 14\varepsilon .

The remaining two cases are handled in the same way, and thus we always obtain
that

v[g3] = T[ - 1,1](v[h1] + v[h2])\pm 14\varepsilon = T[ - 1,1](v[g1] + v[g2])\pm 26\varepsilon 

= T[ - 1,1](v[g1] + v[g2])\pm \varepsilon \prime .

Clearly, this construction can be performed in polynomial time in the size of the
original generalized circuit. Furthermore, given any \varepsilon -satisfying assignment of the
new generalized circuit, we can easily obtain an \varepsilon \prime -satisfying assignment of the original
generalized circuit by setting v[g] := v[g+] - v[g - ] \in [ - 1, 1] for all gates g. It follows
that the \varepsilon -Gcircuit problem with gate types \scrG = \{ G1 - , G+\} is PPAD-hard.

Finally, note that if we let \scrG = \{ G1, G - \} instead, we again obtain the same
result, because G1 - and G+ can easily be simulated. Indeed, it is clear that G1 - can
immediately be simulated. Furthermore, G+ can be simulated by using the equation
T(x+ y) = 1 - T((1 - x) - y).

E.2. FIXP-completeness (proof of Proposition 5.6). Membership in FIXP
follows immediately by noting that a generalized circuit with gates g1, . . . , gm defines
an algebraic circuit F : [0, 1]m \rightarrow [0, 1]m, where for x \in [0, 1]m and i \in [m] we let
Fi(x) = G(xj , xk), where gi = (G, j, k). Indeed, any fixed point of F corresponds
to an assignment that exactly satisfies the gate constraints. In particular, note that
all the gate types we consider can be exactly computed using the usual operations
allowed in FIXP, namely, +,\times ,max, and rational constants. Furthermore, it is easy
to see that this trivially yields an SL-reduction [23].

In order to prove FIXP-hardness we will show that our very restricted set of gates
is actually enough to simulate various more complex gates. Deligkas et al. [20, section
7.2], using a special Brouwer function for the FIXP-complete 3-Nash problem given by
Etessami and Yannakakis [23], proved that computing fixed points of very restricted
algebraic circuits is already FIXP-hard. In more detail, they consider functions F :
[0, 1]n \rightarrow [0, 1]n computed by circuits with a restricted set of gates and such that
every gate always has value in [0, 1] for any input x \in [0, 1]n to the circuit. Because
of this property we can use our gates that truncate to [0, 1] without changing any of
the computations.

In more detail, they allow the following gates: G\zeta (constant \zeta \in \BbbQ \cap [0, 1]), G+,

G - (subtraction truncated to [0, 1]), G\times , G
[0,1]
\times 2 , Gmax, and Gmin. We show below
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ON THE EQUILIBRIUM COMPLEXITY IN FIRST-PRICE AUCTIONS 125

that we can simulate all of these gates, using only the gates G1 - , G\times 2, and G\times (or

alternatively, G1 - , G+, and G(\cdot )2). In particular, G
[0,1]
\times 2 is a restricted gate G\times 2 that

only works on inputs in [0, 1/2]. Since our G\times 2 gate has the same behavior as that
gate for such inputs, it is correctly simulated.

Finally, we simply use copy gates G= to enforce the fixed point constraint, namely,
that the ith input to F be equal to its ith output. It is easy to see that this construction
yields a polynomial-time reduction, and that it is in fact an SL-reduction [23], since
we only need to extract the values assigned to the input gates in order to obtain a
fixed point of F . In the remainder of this proof, we show how all the required gates
can be simulated using our restricted set of gates G1 - , G\times 2, and G\times .

\bfitG =: Copy. In order to copy the value of some gate g1, we use the complement
gate G1 - twice. Namely, we first introduce a gate g2 of type G1 - with input g1,
and then another gate g3 of type G1 - with input g2. Clearly it holds that v[g3] =
1 - v[g2] = 1 - (1 - v[g1]) = v[g1].

\bfitG 1/2: Constant 1/2. In order to obtain a gate that has value 1/2, we create
a small cycle. We introduce two gates, g1 and g2. The gate g1 is of type G= with
input g2, and the gate g2 is of type G1 - with input g1. It follows that v[g1] satisfies
v[g1] = 1 - v[g1], which implies v[g1] = 1/2. Note that together with the G\times gate we
can now also perform multiplication by 1/2, denoted by G\times 1/2.

\bfitG  - : Subtraction. In the proof of Lemma 5.7, we show how to construct a
subtraction gate given access only to G1 - , G\times 2, and a special gate G\phi , where \phi :
[0, 1]2 \rightarrow [0, 1], (x, y) \mapsto \rightarrow (x + 1)(y + 1)/4. Thus, to obtain the subtraction gate, it is
enough for us here to construct a gate G\phi . Since we have access to G\times , it suffices
to construct a gate that implements the function x \mapsto \rightarrow (x + 1)/2. Let g1 be the
input gate. We introduce a gate g2 of type G1 - with input g1, a gate g3 of type
G\times 1/2 with input g2, and finally a gate g4 of type G1 - with input g3. It follows that
v[g4] = 1 - v[g3] = 1 - v[g2]/2 = 1 - (1 - v[g1])/2 = (v[g1] + 1)/2, as desired.

\bfitG +: Addition. Addition can easily be obtained from subtraction by using the
following equality for all x, y \in [0, 1]:

T(x+ y) = 1 - T((1 - x) - y) = G1 - (G - (G1 - (x), y)).

\bfitG max,\bfitG min: Maximum and minimum. The function (x, y) \mapsto \rightarrow max\{ x, y\} can
easily be simulated with existing gates by noting that

max\{ x, y\} = T(x+T(y  - x)) = G+(x,G - (y, x)).

Then (x, y) \mapsto \rightarrow min\{ x, y\} can simply be obtained by min\{ x, y\} = 1  - max\{ 1  - 
x, 1 - y\} .

\bfitG \times \bfitk : Multiplication by integer \bfitk . Let k be an integer that is given in binary

representation, i.e., k =
\sum \ell 

i=0 ai2
i, where ai \in \{ 0, 1\} . Our goal is to construct a

gate that computes x \mapsto \rightarrow T(k \cdot x). Using the G\times 2 gate we can compute T(2i \cdot x) for
i = 0, 1, . . . , \ell . This requires \ell separate G\times 2 gates. Then we use the addition gate to
compute

T

\Biggl( \sum 

i: ai=1

T(2i \cdot x)
\Biggr) 

= T

\Biggl( 
\ell \sum 

i=0

ai2
ix

\Biggr) 
= T(k \cdot x).

This uses at most \ell separate G+ gates. Thus, overall we use a number of gates
that is polynomial in the representation length of k.
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\bfitG \bfitzeta : Constant \bfitzeta \in [0, 1]\cap \BbbQ . If \zeta = 1, we can simply do G\times 2(G1/2) = 1. If
\zeta = 0, we can do G1 - (G\times 2(G1/2)) = 0. Now assume that \zeta \in (0, 1). Write \zeta = c/d,
where c and d are positive integers, c \geq 1, c < d, d \geq 2. Clearly, if we can construct
the constant 1/d, then we can use a G\times k gate with k = c to obtain \zeta . In order to
construct 1/d, we use a small cycle. We introduce two gates, g1 and g2. The gate g1
is of type G\times k with k = d  - 1 and with input g2. The gate g2 is of type G1 - with
input g1. Thus, it holds that v[g2] = 1  - v[g1] = 1  - T((d  - 1) \cdot v[g2]). It is easy to
check that the only solution of this equation is v[g2] = 1/d.

Finally, let us show that the set of gate types G1 - , G+, and G(\cdot )2 also suffices to
simulate all the gates above, by showing that they can simulate G1 - , G\times 2, and G\times .
As before, G1 - can be used to create G=. Then G+ and G= can be used to obtain
G\times 2. Thus, it remains to simulate G\times .

Note that G - can be obtained by T(x - y) = 1 - (T((1 - x) + y)). Furthermore,
we can construct G\times 1/2 on input gate g1 as follows. We introduce two gates, g2 and
g3. The gate g2 is of type G - and has inputs g1 and g3. The gate g3 is of type G=

with input g2. It follows that v[g3] = T(v[g1]  - v[g3]), which has the only solution
v[g3] = v[g1]/2.

In order to simulate G\times , note that
\Bigl( x
2
+

y

2

\Bigr) 2
= (x/2)2 + (y/2)2 + xy/2.

We can easily compute x/2 + y/2 and then square using G(\cdot )2 . Similarly, we can also
compute (x/2)2+(y/2)2. By using G - , we then obtain xy/2, and thus xy after using
a G\times 2 gate.

E.3. Proof of Lemma 5.7. In order to prove that the problem remains hard
with \scrG = \{ G\times 2, G1 - , G\phi \} , we will show that other gate types can be simulated using
only these three gate types. Let \varepsilon \in [0, 1/14] and assume that we have access to gates
of type G\times 2, G1 - , and G\phi .

\bfitG 1: Constant 1. In order to create a constant 1 we use the fact that for any
x, y \in [0, 1]

T
\bigl( 
23 \cdot \phi (x, y)

\bigr) 
= T

\bigl( 
23(x+ 1)(y + 1)/4

\bigr) 
\geq T(2) = 1.

In more detail, we use a gate g1 of type G\phi (with arbitrary inputs), then a gate g2 of
type G\times 2 with input g1, another gate g3 of type G\times 2 with input g2, and finally another
gate g4 of type G\times 2 with input g3. We have that v[g1] \geq 1/4 - \varepsilon , v[g2] \geq T(2 \cdot v[g1]) - 
\varepsilon \geq 1/2  - 3\varepsilon , v[g3] \geq T(2 \cdot v[g2])  - \varepsilon \geq 1  - 7\varepsilon , and v[g4] \geq T(2 \cdot v[g3])  - \varepsilon \geq 1  - \varepsilon ,
since \varepsilon \leq 1/14. Thus, we can construct a gate that has the value 1\pm \varepsilon .

\bfitG /2: Division by 2. In order to divide the value of some gate g1 by 2, we use
the fact that

1 - \phi (1 - v[g1], 1) = 1 - (2 - v[g1])(1 + 1)/4 = v[g1]/2.

In more detail, we use a gate g2 of typeG1 - with input g1, then we use a gate g3 of type
G\phi with inputs g2 and a constant 1\pm \varepsilon , and finally we use a gate g4 of type G1 - with
input g3. It holds that v[g2] = 1 - v[g1]\pm \varepsilon , v[g3] = \phi (v[g2], 1\pm \varepsilon )\pm \varepsilon = 1 - v[g1]/2\pm 2\varepsilon ,
and v[g4] = 1 - v[g3]\pm \varepsilon = v[g1]/2\pm 3\varepsilon . Thus, we can construct a gate that performs
division by 2 with error at most 3\varepsilon .

\bfitG =: Copy. It is easy to see that using two gates of type G1 - , one after the
other, copies the original value with error at most 2\varepsilon .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

3/
23

 to
 1

31
.1

88
.6

.1
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y
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\bfitG \bfiti \bfitn \bfitv : Inverse. We now show how to construct the gate Ginv, which computes
the function x \mapsto \rightarrow  - 1 + 4/(2 + x) and will be very useful to construct the subtraction
gate below. The construction of Ginv uses a cycle. Let g1 be the input gate. We
first use a gate g2 of type G1 - with input g1, then we use a gate g3 of type G\phi with
input g2 and g4, and finally we let gate g4 be of type G= with input g3. We have that
v[g2] = 1  - v[g1] \pm \varepsilon , v[g3] = \phi (v[g2],v[g4]) \pm \varepsilon , and v[g4] = v[g3] \pm 2\varepsilon . It follows
that v[g4] must satisfy the equation

v[g4] = \phi (v[g2],v[g4])\pm 3\varepsilon = (v[g2] + 1)(v[g4] + 1)/4\pm 3\varepsilon ,

which implies that

v[g4] =
1 + v[g2]

3 - v[g2]
\pm 6\varepsilon .

As a result, we obtain that

v[g4] =
2 - v[g1]

2 + v[g1]
\pm 8\varepsilon =  - 1 +

4

2 + v[g1]
\pm 8\varepsilon ,

i.e., we can compute the function with error at most 8\varepsilon .

\bfitG  - : Subtraction. Given gates g1 and g2, we want to obtain T(v[g1]  - v[g2]).
To achieve this, we first use the fact that

\phi 

\Biggl( 
\phi 

\biggl( 
 - 1 +

4

2 + y
, 1 - x

\biggr) 
,
y

2

\Biggr) 
= \phi 

\biggl( 
2 - x

2 + y
,
y

2

\biggr) 
=

1

2
+

1

8
(y  - x).

In more detail, we first use a gate g3 of type Ginv with input g2, then a gate g4 of
type G1 - with input g1, then a gate g5 of type G\phi with inputs g3 and g4, then a gate
g6 of type G/2 with input g2, and finally a gate g7 of type G\phi with inputs g5 and
g6. We thus obtain that v[g3] =  - 1 + 4/(2 + v[g2]) \pm 8\varepsilon , v[g4] = 1  - v[g1] \pm \varepsilon , and
v[g5] = (2  - v[g1])(2 + v[g2]) \pm 7\varepsilon . Furthermore, it holds that v[g6] = v[g2]/2 \pm 3\varepsilon ,
and thus v[g7] = 1/2 + (v[g2] - v[g1])/8\pm 11\varepsilon .
Next, we can obtain the subtraction operation from this by noting that

4

\Biggl( 
1 - T

\Biggl( 
2

\biggl( 
1

2
+

1

8
(y  - x)

\biggr) \Biggr) \Biggr) 
=4

\Biggl( 
1 - 

\biggl( 
1 - 1

4
T(x - y)

\biggr) \Biggr) 
=4

T(x - y)

4
=T(x - y).

This is implemented by using a gate g8 of type G\times 2 with input g7, then a gate g9
of type G1 - with input g8, then a gate g10 of type G\times 2 with input g9, and finally
another gate g11 of type G\times 2 with input g10. It holds that

v[g8] = T(2 \cdot v[g7])\pm \varepsilon = 1 - T(v[g1] - v[g2])/4\pm 23\varepsilon .

As a result, it then holds that v[g9] = T(v[g1]  - v[g2])/4 \pm 24\varepsilon , v[g10] = T(v[g1]  - 
v[g2])/2 \pm 49\varepsilon , and finally v[g11] = T(v[g1]  - v[g2]) \pm 99\varepsilon . Thus, we can compute
subtraction with error at most 99\varepsilon .

\bfitG \times : Multiplication. Given gates g1 and g2, we want to obtain v[g1] \cdot v[g2].
We only perform the construction for the case \varepsilon = 0, since we only need this gate
for the FIXP-hardness. Note that we can multiply by 4 using two consecutive G\times 2
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gates. Similarly, we can divide by 4 using two consecutive G/2 gadgets. To perform
multiplication, we use the fact that

\phi (x, y) - 1

4
 - x

4
 - y

4
=

xy

4
.

In more detail, we first use a gate g3 of type G\phi with input g1 and g2, then a gate g4
of type G/4 with input the constant 1, then a gate g5 of type G - with inputs g3 and
g4, then a gate g6 of type G/4 with input g1, then a gate g7 of type G - with inputs
g5 and g6, then a gate g8 of type G/4 with input g2, then a gate g9 of type G - with
inputs g7 and g8, and finally a gate g10 of type G\times 4 with input g9. We have that

v[g3] = \phi (v[g1],v[g2]) = (v[g1] + v[g2] + v[g1] \cdot v[g2] + 1)/4.

Then we obtain that v[g5] = (v[g1] + v[g2] + v[g1] \cdot v[g2])/4, v[g7] = (v[g2] + v[g1] \cdot 
v[g2])/4, v[g9] = v[g1]\cdot v[g2]/4, and finally v[g10] = v[g1]\cdot v[g2]. Thus, we can perform
exact multiplication when \varepsilon = 0.

Hardness. We have shown that we can simulate gates G1 and G - with error
at most 99\varepsilon . Thus, by Proposition 5.5, the PPAD-hardness of our restricted version
follows. For the case \varepsilon = 0, we have shown that we can exactly simulate gates G\times 2,
G1 - , and G\times . As a result, by Proposition 5.6, the exact version of our restricted
version is FIXP-hard.
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