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DUALITY AND OPTIMALITY OF AUCTIONS FOR UNIFORM
DISTRIBUTIONS∗

YIANNIS GIANNAKOPOULOS† AND ELIAS KOUTSOUPIAS†

Abstract. We develop a general duality-theory framework for revenue maximization in additive
Bayesian auctions. The framework extends linear programming duality and complementarity to
constraints with partial derivatives. The dual system reveals the geometric nature of the problem
and highlights its connection with the theory of bipartite graph matchings. We demonstrate the
power of the framework by applying it to a multiple-good monopoly setting where the buyer has
uniformly distributed valuations for the items, the canonical long-standing open problem in the area.
We propose a deterministic selling mechanism called straight-jacket auction (SJA), which we prove
to be exactly optimal for up to six items, and conjecture its optimality for any number of goods.
The duality framework is used not only for proving optimality, but perhaps more importantly for
deriving the optimal mechanism itself; as a result, SJA is defined by natural geometric constraints.
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1. Introduction. The problem of maximizing revenue in multidimensional
Bayesian auctions is one of the most prominent within the area of mechanism design.
An auctioneer wants to sell a number of items to some potential buyers (bidders).
Each bidder has a value for every item; this is the maximum price that she is willing
to pay to get the item and it is a private information. The value of a set of items is
simply the sum of the values of the items in the set (additive valuations). The buy-
ers submit their bids and the auctioneer must decide, perhaps with randomization,
what items to allocate to each player and how much to charge each one of them for
this transaction. The seller has some prior (incomplete) knowledge about how much
each player values the items, captured by a (joint) probability distribution over the
space of all possible valuations. However, assuming standard selfish game-theoretic
behavior, the players would lie about their true values and submit false bids if this is
to increase their personal gain. The goal is to design auction protocols that maximize
the total expected revenue of the seller, by also ensuring the truthful participation of
the bidders.

For the single-dimensional case where only one item is to be auctioned among
the players, the seminal work of Myerson [27] has completely settled the problem.
His solution is simple and elegant: the optimal auction is deterministic and easy to
describe by a “virtual valuations” transformation and reduction to a social welfare
maximization problem which can be solved using the well-studied Vickrey–Clarke–
Groves (VCG) auction [28, 19].

Unfortunately, for the many-items setting these elegant properties and results do
not hold in general. It is very likely that there is no simple closed-form description
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of optimal revenue auctions, especially in a unified way similar to Myerson’s solution.
However, for the most commonly studied probability distributions, e.g., the uniform
and normal, we would like to have such clear, closed-form descriptions of the optimal
auctions, or at least algorithms—preferably simple and intuitive—that compute op-
timal auctions (their allocation and payment functions). But we are far from such a
goal. There exists no interesting continuous probability distribution for which we know
the optimal auction for more than three items. The difficulty of the problem is illus-
trated by the lack of general results for the canonical case of uniform i.i.d. valuations
in the unit interval [0, 1] even for a single bidder. In this work, we resolve this case for
up to six items. We give an exact, analytic and intuitive way of computing the opti-
mal prices; the solution is in closed-form, but involves roots of polynomials of degree
equal to the number of items. We do that as a special application of a much more
general construction: a duality-theory framework for proving exact and approximate
optimality of many-bidder multi-item auctions for arbitrary continuous distributions.
We expect this framework to be essential for helping generalizing Myerson’s solution
to many-items settings, the holy grail of auction theory.

It is known that even in the simple case of one bidder, randomized auctions can
perform strictly better than deterministic ones [18, 17, 24, 31, 9]. Manelli and Vincent
[24] provide some sufficient conditions for deterministic auctions to be optimal, but
these are quite involved, in the form of functional inequalities that incorporate abstract
partitions of the valuation space, and admittedly difficult to interpret. They were able
to instantiate them though for the case of two and three uniform i.i.d. distributions
and completely determine an optimal deterministic auction. For more items, it is not
known whether the optimal auction is a deterministic one. Our results here show
that the optimal auction for up to six items is indeed deterministic. We conjecture
that this is true for any number of items; we also conjecture that for more than one
bidder the optimal auction is not deterministic. Hart and Nisan [16] have provided
a very simple sufficient condition in the case of two i.i.d. items for the deterministic
full-bundle auction to be optimal and deploy it to show that this is the case for the
equal-revenue distribution. Finally, Daskalakis et al. [9] were also able to deal with
the special case of two items and independent (not necessarily identical) exponential
distributions and give an exact solution, which in this case is randomized. Essentially
this is all that was known prior to our work regarding exact descriptions of optimal
auctions with continuous probability distributions,

Given the difficulty of designing optimal auctions, Hart and Nisan [16] study
the performance of the two most straightforward deterministic mechanisms for the
single-buyer setting: the one that sells all items in a full bundle and the one that sells
each item independently. They provide elegant approximation ratio guarantees (log-
arithmic with respect to the number of items) that hold universally for all product
(independent) distributions, without even assuming standard regularity conditions
(as, e.g., in [6, 24, 27]). Li and Yao [21] further improved their results. The difficulty
of providing exact optimal solutions for multi-item settings is further supported by a
recent computational hardness result by Daskalakis et al. [9], where it is shown that
even for a single buyer and independent (but not identical) valuations with finite sup-
port of size 2, it is #P-hard to compute the allocation function of an optimal auction.
However this does not exclude the possibility of efficiently computing approximate
solutions. In fact, Cai and Huang [5] and Daskalakis and Weinberg [8] have presented
PTAS (polynomial-time approximation schemes) for i.i.d. settings.

Daskalakis, Deckelbaum, and Tzamos [9] have also published a duality approach
to the problem, inspired by optimal transport theory. With its use, they gave opti-
mal mechanisms for two-item settings for exponential distributions. Their approach
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assumes independent item distributions that either have unbounded interval supports
and decrease more steeply than 1/x2 or bounded ones but they vanish to zero at the
right bound of the interval. Thus their method cannot be directly applied to uniform
valuations. Our aim is to provide a duality theory framework for multi-item optimal
auctions, which is as general and clean as possible for many bidders and arbitrary
joint distributions (not necessarily independent ones). For that reason, we deploy a
“proof-from-scratch” approach directly inspired by linear programming duality which
is easily comprehensible and applicable, and with which the reader will immediately
feel familiar. At their core, the two duality frameworks are based on similar ideas;
although we expect our framework to have wider applicability, we also believe that
there will be special cases in which the framework of [9] will be more suitable to apply.

Finally, we mention some very recent developments after the initial conference
version [13] of our paper: in a groundbreaking work Babaioff et al. [3] showed that
a constant approximation of the optimal revenue can be achieved for the case of one
bidder and independent items by very simple deterministic mechanisms, using a core-
tail decomposition technique inspired by [21], and Yao [37] later generalized this idea
to many-player settings.

1.1. Model and notation. We denote the real unit interval by I = [0, 1],
the nonnegative reals by R+ = [0,∞). We consider auctions of n bidders who are
interested in buying any subset of m items. For any positive integer m we use
the notation [m] = {1, 2, . . . ,m}. The value of bidder i for item j is in interval
Di,j = [Li,j , Hi,j ] ⊆ R+; we denote by Di =

∏m
j=1Di,j the hyperrectangle of all

possible values of bidder i, and by D =
∏n
i=1Di the space of all valuation inputs

to the mechanism. The seller knows some probability distribution over D with an
almost everywhere1 (a.e.) differentiable density function f . Intervals Di,j need not
be bounded; that is, we allow Hi,j ∈ R ∪ {∞}.

Let 0m = (0, 0, . . . , 0) and 1m = (1, 1, . . . , 1) denote the m-dimensional zero and
unit vectors, respectively. We will drop subscript m whenever this causes no confusion.
For two m-dimensional vectors x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) we write
x ≤ y as a shortcut for xj ≤ yj for all j ∈ [m]. For any matrix x ∈ Rn×m, xi
will denote its ith (m-dimensional) row vector. For a function f : Rn×m → R and
i ∈ [n] we denote ∇if(x) ≡

(
∂f(x)
∂xi,1

, ∂f(x)
∂xi,2

, . . . , ∂f(x)
∂xi,m

)
; notice how only the derivatives

with respect to the variables in row xi appear. Finally, we use the standard game-
theoretic notation x−j = (x1, x2 . . . , xj−1, xj+1, . . . , xm) to denote the resulting vector
if we remove x’s jth coordinate. Then, x = (x−j , xj). Similarly, x−(i,j) will denote
all values of the n×m matrix x when we remove the (i, j)th entry. For a large part
of the paper we will restrict our attention to a single bidder. In this case, we drop
the subscript i completely; for example, we write Lj instead of L1,j .

1.1.1. Mechanisms and truthfulness. In this paper we study auctions for
sellingm items to n bidders when bidder i ∈ [n] has a nonnegative valuation xi,j ∈ Di,j

for item j ∈ [m]. This is private information of the bidder, and intuitively represents
the amount of money she is willing to pay to get this item. The seller has only some
incomplete prior knowledge of the valuations x in the form of a joint probability
distribution F over D from which x is drawn.

A direct revelation mechanism (auction) M = (a,p) on this setting is a protocol
which, after receiving a bid vector x′i from each bidder i as input (the bidder may

1With respect to the standard Lebesgue measure µ in Rn×m.
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lie about her true valuations xi and misreport x′i 6= xi), offers item j to bidder i
with probability ai,j(x′) ∈ [0, 1], and bidder i pays pi(x′) ∈ R. We assume that
each item can only be sold to at most one bidder, or equivalently

∑
i ai,j(x

′) ≤ 1.
The total revenue extracted from the auction is

∑
i pi(x

′). If we want to restrict our
attention only to deterministic auctions, we take ai,j(x′) ∈ {0, 1}. Notice also that we
do not demand nonnegative payments p ≥ 0, i.e., we don’t assume what is known as
the no positive transfers (NPT) condition, since that is not explicitly needed for our
results. However, as argued, e.g., in [16, Sect. 2.1], assuming such a condition would
be without loss of generality for the revenue maximization problem.

More formally, a mechanism consists of an allocation function a : D −→ In×m,
which satisfies

∑
i ai,j(x) ≤ 1 for all x ∈ D and all items j ∈ [m], paired with

payment functions pi : D −→ R. We consider each bidder having additive valuations
for the items, her “happiness” when she has (true) valuations xi, and players report
x′ = (x′−i,x

′
i) to the mechanism being captured by her utility function

(1) ui(x′|xi) ≡ ai(x′) · xi − pi(x′) =
m∑
j=1

ai,j(x′)xi,j − pi(x′),

the expected sum of the valuations she receives from the items she manages to pur-
chase minus the payment she has to submit to the seller for this purchase. The player
is completely rational and selfish, wanting to maximize her utility, and that’s why she
will not hesitate to misreport x′i instead of her private values xi if this is to give her
a higher utility in (1). On the other hand, the seller’s happiness is captured by the
total revenue of the mechanism,

(2)
n∑
i=1

pi(x′) =
n∑
i=1

(ai(x′) · xi − ui(x′|xi)) ,

which is a simple rearrangement of (1).
It is standard in mechanism design to ask for auctions to respect the following

two properties, for any player i ∈ [n]:
• Individual rationality (IR): ui(x|xi) ≥ 0 for all x ∈ D.
• Incentive compatibility (IC): ui(x|xi) ≥ ui((x−i,x′i)|xi) for all x ∈ D and

x′i ∈ Di.
The IR constraint corresponds to the notion of voluntary participation, that is, a
bidder cannot harm herself by truthfully taking part in the auction, while IC captures
the fundamental property that truthtelling is a dominant strategy2 for the bidder in
the underlying game, i.e., she will never receive a better utility by lying. Auctions
that satisfy IC are also called truthful. From now on we will focus on truthful IR
mechanisms, and so we will relax notation ui(x|xi) to just ui(x), considering bidder’s
utility as a function ui : D −→ R+. The following is an elegant, extremely useful
analytic characterization of truthful mechanisms due to Rochet [32]. For proofs of
this we recommend [16, 25].

Theorem 1.1. An auction M = (a,p) is truthful (IC) if and only if the utility
functions ui that induces have the following properties with respect to the ith row
coordinates, for all bidders i:

1. ui(x−i, ·) is a convex function.

2In this work, we consider dominant strategy incentive compatibility (DSIC), the strongest notion
of incentive compatibility in which the bidders know all values.
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2. ui(x−i, ·) is almost everywhere (a.e.) differentiable with

(3)
∂ui(x)
∂xi,j

= ai,j(x) for all items j ∈ [m] and a.e. x ∈ D.

The allocation function ai is a subgradient of ui.

Theorem 1.1 essentially establishes a kind of correspondence between truthful mech-
anisms and utility functions. Not only does every auction induce well-defined utility
functions for the bidders, but also conversely, given nonnegative convex functions that
satisfy the properties of the theorem, we can fully recover a corresponding mechanism
from expressions (3) and (2).

1.1.2. Optimal auctions. In this paper we study the problem of maximizing
the seller’s expected revenue based on his prior knowledge of the joint distribution F ,
under the IR and IC constraints, thus (by Theorem 1.1 and (2))

(4) sup
u1,...,un

n∑
i=1

∫
D

(∇ui(x) · xi − ui(x)) dF (x)

over the space of nonnegative convex functions ui on D having the properties

n∑
i=1

∂ui(x)
∂xi,j

≤ 1,(zj(x))

∂ui(x)
∂xi,j

≥ 0(si,j(x))

for a.e. x ∈ D, all i ∈ [n] and j ∈ [m].

1.1.3. Deterministic auctions. Given the characterization of Theorem 1.1, in
case one wants to focus on deterministic auctions then it is enough to consider only
utility functions that are the maximum of affine hyperplanes with slopes either 0 or
1 with respect to any direction (see, e.g., [33]). So, for example, any single-bidder
(n = 1) deterministic and symmetric3 auction corresponds to a utility function of the
form

u(x) = max
J⊆[m]

∑
j∈J

xi − p|J|

 ,

where pr is the price offered to the buyer for any bundle of r items, r ∈ [m].

2. Outline of our work. We give here an outline of our work which bypasses
many technical issues but brings out a few central ideas. The reader may also find it
helpful to revisit this outline during the more technical exposition later on.

2.1. Duality for a single bidder. We first develop a general duality framework
that applies to almost all interesting continuous probability distributions (section 3).
We view the problem of maximizing revenue as an optimization problem in which
the unknowns are the utility functions ui(x) of the bidders (program (4)). There are
two main restrictions imposed to these functions by truthfulness (see Theorem 1.1):
the convexity restriction (the utility function ui(x) must be convex with respect to

3This means that the auction does not discriminate between items, i.e., any permutation of the
valuations profile x results to the same permutation of the output allocation vector a(x).
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the private values xi of bidder i) and the gradient restriction (the derivatives of this
function must be nonnegative and they have to be at most 1 for every item).

We simplify things by dropping the convexity constraint and keep only the gradi-
ent constraints. Surprisingly, the convexity constraint can be recovered for free from
the optimal solution of the remaining constraints for a large class of distributions
which includes the uniform distribution. We view the resulting formulation as an
infinite linear program with variable the utility function of the bidder. Its essential
constraints (labeled by (zj) in (4)) are that the derivatives for each item must be at
most 1 and its objective is to maximize the expected value of

∑
i∇iui(x) · x− ui(x).

We carefully rewrite the integral in (4) to bring it into a form which does not include
any derivatives. Remarkably, Myerson’s solution for the special case of one item is
based on a different rewriting of the system in which the primal variables are the
derivatives of the utility, instead of the utility itself. In fact, since the allocation
constraints involve exactly the derivatives, this is the most natural choice of primal
variables. Unfortunately such an approach does not seem to work for the case of many
items, since the partial derivatives are not independent functions and, if we treat them
as such, we run the risk of violating the gradient constraints.

Having rewritten the original system in terms of the utility functions ui(x), we
define a proper dual system (program (6)) with variables functions zj(x), one for
every item, and functions si,j(x), one for every pair of bidder and item. The dual
constraints require that functions zj − si,j take small values at the lower boundary of
the domain and high values at the upper boundary of the domain. Furthermore, the
objective is to minimize the sum of z′js integrals (Figure 1). This would have been a
trivial problem—for example, each zj could crawl at the minimum possible value until
it reached the upper boundary and then shoot up to the required high value—had it
not existed another constraint which requires that the sum of the derivatives of these
functions is bounded above (and therefore the functions have to start rising sooner,
to be able to reach the high value at the upper boundary).

Although the derivation of the dual program is natural and straightforward, there
is no guarantee that the dual optimal value matches the primal optimal value, since
these are infinite, indeed uncountable, linear programs. We directly show that the two
systems satisfy the weak duality property (Lemma 3.2). This gives a general frame-
work to prove optimality of a mechanism, by finding a dual solution and showing that
their values match. Unfortunately, in most cases this is extremely hard, since the op-
timal value may be very complicated (for example, it turns out that the optimal value
for the uniform distribution of m items consists of algebraic numbers of degree m).
Instead we prove a complementarity theorem, which allows one to prove optimality by
giving primal and dual solutions that satisfy the complementary slackness conditions.
In fact, we prove a generalization of complementarity (Lemma 3.3), which allows us
later to seek finite combinatorial solutions instead of continuous ones (Figure 4).

A similar duality, limited to a single bidder and to a restricted set of probability
distributions, was used by Daskalakis et al. [9]. Their duality framework does not
apply to the uniform distribution, the canonical example of continuous probability.
Our approach manages to handle a much wider class of probability distributions,
which includes the uniform distribution, by taking care of the boundary issues.

2.2. Duality for the uniform distribution and a single bidder. Then, we
zoom in to the canonical problem for revenue maximization: we consider uniform
distributions over [0, 1]m of m items and only one bidder. This may seem like a
special case, and in fact it is; however, despite being the canonical case of a very
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important problem, it has been open since the work of Myerson [27], except for some
specialized approaches which successfully resolved the problem for two and three items
(mostly using complicated necessary conditions and rather involved computations).
Our approach gives an elegant framework to solve these cases and provides a natural
description and understanding of the solution. It also gives rise to beautiful problems;
in particular, for the case of two items we know (but not included here; see, e.g., [11])
at least five different solutions for the problem, each with its own merits.

Our dual formulation of the problem can be rephrased as follows (see Remark 3.1):
In the unit hypercube of m dimensions, we seek functions zj(x), one for each dimen-
sion; each zj starts at value 0 on the edge (0,x−j) of the hypercube and rises up to
value 1 at the opposite edge (1,x−j) of the hypercube. Given that the functions can-
not rise rapidly (more precisely, the sum of their slopes cannot exceed m+ 1 at each
point of the hypercube), find the functions with minimum sum of integrals. Alterna-
tively, we can view it as a problem in the m+ 1 hypercube: each function zj defines a
hypersurface which starts at the edge (0,x−j) of the hypercube, ends at the opposite
edge (0,x−j), and they collectively cannot grow rapidly; we seek to minimize the sum
of volumes beneath these surfaces (Figure 1(a)). The remaining dual constraints sj
do not appear anywhere, since for this application to the case of uniform distribution,
we make the choice to relax even further the primal program (4) by dropping the cor-
responding (si,j) constraints that require the derivatives to be nonnegative; as we’ll
see, this is again without loss for the revenue optimality.

2.3. The straight-jacket auction (SJA). This dual system suggests in a nat-
ural way a selling mechanism, the straight-jacket auction (SJA). We explain the intu-
ition behind the mechanism and give a formal definition in section 4. SJA is defined
so that, for every bundle of items A with |A| = r, the price pr for A is determined
by the requirement that the volume of the r-dimensional body in which the mechanism
sells a nonempty subset of A is exactly equal to r/(m+ 1).

The aim of the remaining and more technical part of the paper is to develop the
toolkit to prove that SJA is optimal for any number of items; however, we manage to
prove optimality only for up to six items.

The straightforward way for proving the optimality of SJA would be to find a
pair of primal and dual solutions that have the same value. Although we know such
explicit solutions for the case of two items, there does not seem to exist a natural
solution of the dual program which can be easily described for more that two items.
How then can we show optimality in such cases? We do not give an explicit dual
solution, but we only show that a proper solution exists and rely on complementarity
to show optimality.

2.4. Proof of optimality of SJA. A central notion in our development is
the notion of deficiency: the k-deficiency of a body S in m dimensions is |S| −
k (
∑
j |S[m]\{j}|), where S[m]\{j} denotes the projection of S on the hyperplane xj = 0

(this is an (m−1)-dimensional body). In particular, we are interested in the deficiency
of the subsets of U∅, the valuation subspace in which the auction sells a nonempty
bundle. The main tool for proving the optimality of SJA is the following: To show
that the SJA is optimal it suffices to show that no set S of points inside U∅ has positive

1
m+1 -deficiency (Theorem 4.9).

The fact that this is sufficient is based mainly on the observation that finding a
feasible dual solution is, in disguise, a perfect matching problem between the hyper-
cube and its boundaries (taken with appropriate multiplicities). If Hall’s condition for
perfect matchings (see, e.g., [23, Theorem 1.1.3]) could apply to infinite graphs, under



128 YIANNIS GIANNAKOPOULOS AND ELIAS KOUTSOUPIAS

some continuity assumptions the sufficiency of the above would be evident. However,
Hall’s theorem does not hold for infinite graphs in general [1] and, even worse, the
continuity assumptions seem hard to establish. We bypass both problems by consid-
ering an interesting discretized version of the problem that takes advantage of Hall’s
theorem and the piecewise continuity; we then apply approximate complementarity
to prove optimality.

The technical core in our proof for the optimality of SJA consists of establishing
that no positive deficiency subset of U∅ exists. Let us call such a set a counterexam-
ple. To prove that no counterexample exists, we first argue that such a counterexam-
ple would have certain properties and then show that no counterexample with these
properties exists. We first show that we can restrict our attention to special types of
counterexamples, those that are upwards closed and symmetric (Lemma 5.5). Ideally,
we would like to restrict our attention even further to box-like counterexamples, those
that are the intersection of an m-dimensional box and U∅. This would restrict signif-
icantly the search of counterexamples, and in fact a well-known isoperimetric lemma
by Loomis and Whitney [22] (see Lemma 5.7), and a generalization by Bollobás and
Thomason [4] show that this is actually true when we remove the restriction that the
counterexample must lie inside some fixed body (in our case, inside U∅). Unfortu-
nately, we can only establish this claim for 2 items. Instead, we prove a weaker version
of it: we show that if a counterexample exists, it must be closed under taking the
convex hull of all symmetric images of a point (Lemma 5.10). Furthermore, the re-
quirement on deficiency provides a lower bound on the volume of the counterexample
(Lemmas 5.8 and 5.9).

By exploiting these properties, we show that no counterexample exists for six or
fewer items (Theorem 4.8). The case of four or fewer items is straightforward, but
the case of five items is qualitatively more challenging. The main reason for this dif-
ficulty is that the optimal mechanism for five items never sells a bundle of four items
(equivalently, the price for four items is equal to the price of five items). The case of
six items is similar to the case of five items; the optimal mechanism does not sell any
bundles of five items. However, all these cases are being treated in a unified way in
the proof of the theorem that avoids tiresome case analysis. We must point out here
that Theorem 4.8 is essentially the only ingredient of this paper whose proof does not
work for more than six items.

3. Duality. Motivated by traditional linear programming duality theory, we de-
velop a duality theory framework that can be applied to the problem (4) of designing
auctions with optimal expected revenue. By interpreting the derivatives as differences,
we can view this as an (infinite) linear program and we can find its dual. The variables
of the primal linear program are the values of the functions ui(x). The labels (zj(x))
and (si,j(x)) on the constraints of program (4) are the analog of the dual variables of
a linear program.

To find its dual program, we first rewrite the objective function in terms of the
ui’s instead of their derivatives. In particular, by integration by parts we have∫
D

∂ui(x)
∂xi,j

xi,jf(x) dx

=
∫
D−(i,j)

[ui(x)xi,jf(x)]xi,j=Hi,j

xi,j=Li,j
dx−(i,j) −

∫
D

ui(x)
∂(xi,jf(x))

∂xi,j
dx

=
∫
D−(i,j)

[ui(x)xi,jf(x)]xi,j=Hi,j

xi,j=Li,j
dx−(i,j) −

∫
D

ui(x)f(x) dx−
∫
D

ui(x)xi,j
∂f(x)
∂xi,j

dx

to rewrite the objective of the primal program as
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n∑
i=1

∫
D

(∇ui(x) ·xi − ui(x)) dF (x)(5)

=
n∑
i=1

m∑
j=1

∫
D−(i,j)

Hi,j ui(Hi,j ,x−(i,j)) f(Hi,j ,x−(i,j)) dx−(i,j)

−
n∑
i=1

m∑
j=1

∫
D−(i,j)

Li,j ui(Li,j ,x−(i,j)) f(Li,j ,x−(i,j)) dx−(i,j)

−
n∑
i=1

∫
D

ui(x) ((m+ 1)f(x) + xi · ∇if(x)) dx.

Notice that some of the above expressions make sense only for bounded domains
(i.e., when Hi,j is not infinity), but it is possible to extend the duality framework to
unbounded domains, by carefully replacing these expressions with their limits when
they exist or by appropriately truncating the probability distributions. For the main
results in this work we deal only with bounded domains, but for completeness and
future reference we provide a treatment of the general case in Appendix C.

We also relax the original problem by replacing the convexity constraint by the
much milder constraint of absolute continuity ; absolute continuity allows us to express
functions as integrals of their derivatives. We can restate this as follows: truthfulness
in general imposes two conditions on the solution of allocating the items to bidders (see
Theorem 1.1): the first condition is that the utility is convex; the second one is that the
allocations must be gradients of the utility. It seems that in most cases, including the
important Myersonian case of one item and regular distributions, when we optimize
revenue the convexity constraint is redundant. Later on, when we will be applying the
duality framework to the case of uniform distributions we will also drop the constraints
of nonnegative allocation probabilities (i.e., the (sj(x)) constraints in (4)). In many
cases, dropping these constraints might have no effect on the value of the program.
However, there are cases in which these constraints are essential. In particular, they
are needed even for the case of one item when the probability distributions are not
regular. We give an in-depth discussion of this topic in Appendix B.

To find the dual program, we have to take extra care on the boundaries of the
domain, since the derivatives correspond to differences from which one term is missing
(the one that corresponds to the variables outside the domain). This is a point where
our approach differs from that of Daskalakis et al. [9], which applies only to special
distributions and in particular it does not apply to the uniform distribution. Inside
the domain, the dual constraint that corresponds to the primal variable ui(x) is∑
j
∂zj(x)
∂xi,j

≤ (m+ 1)f(x) + xi · ∇if(x).
So, the dual program that we propose is

(6) inf
z1,...,zm

∫ m∑
j=1

zj(x) dx

subject to
m∑
j=1

(
∂zj(x)
∂xi,j

− ∂si,j(x)
∂xi,j

)
≤ (m+ 1)f(x) + xi · ∇if(x),(ui(x))

zj(Li,j ,x−(i,j))− si,j(Li,j ,x−(i,j)) ≤ Li,jf(Li,j ,x−(i,j)),(ui(Li,j ,x−(i,j)))
zj(Hi,j ,x−(i,j))− si,j(Hi,j ,x−(i,j)) ≥ Hi,jf(Hi,j ,x−(i,j)),(ui(Hi,j ,x−(i,j)))

zj(x), si,j(x) ≥ 0.
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The above intuitive derivation of this dual is used only for illustration and for
explaining how we came up with it. None of the results rely on the actual way of
coming up with the dual problem. However, the derivation is useful for intuition and
for suggesting traditional linear programming machinery for these infinite systems;
for example, although we don’t directly use any results from the theory of linear
programming duality, we are motivated by it to prove similar connections between
our primal and dual programs.

One can interpret this dual as follows: For the sake of clarity, assume a sin-
gle bidder and drop the si,j constraints; we seek m functions zj defined inside the
hyperrectangle [L1, H1]× · · · × [Lm, Hm] such that

• In the jth direction, function zj starts at value (at most) Ljf(Lj ,x−j) and
ends at value (at least) Hjf(Hj ,x−j); this must hold for all x−j .

• At every point of the domain, the sum of the derivatives of functions zj cannot
exceed (m+ 1)f(x) + x · ∇f(x).

• The sum of the integrals of these functions is minimized.
For a significant portion of this paper, we materialize this duality framework

by applying it to the case of i.i.d. uniform distributions over the unit interval Im.
Therefore, let’s clearly state our dual constrains for ease of reference:

Remark 3.1 (Duality for uniform domains). The dual constraints (in program (6))
for the single-bidder m-items uniform i.i.d. setting over Im become

m∑
j=1

∂zj(x)
∂xj

≤ m+ 1,(u(x))

zj(0,x−j) = 0,(u(0,x−j))
zj(1,x−j) ≥ 1,(u(1,x−j))

zj(x) ≥ 0.

A geometric interpretation of this dual for the case of one and two items, based on
the previous discussion, can be found in Figure 1.

Let us also mention parenthetically that one can derive Myerson’s results by
selecting as variables not the utilities ui(x), but their derivatives. In fact, since the
allocation constraints involve exactly the derivatives, this is the natural choice of
primal variables. Unfortunately, such an approach does not seem to work for more
than one item because the derivatives are not independent functions. If we treat them
as independent, we lose the power of the gradients constraint.

3.1. Duality and complementarity. The way that we derived the dual system
does not yet provide any rigorous connection with the original primal system. We
now prove that this is indeed a weak dual, in the sense that the value of the dual
minimization program (6) cannot be less than the value of the primal program.

Lemma 3.2 (Weak duality). The value of every feasible solution of the primal
program (4) does not exceed the value of any feasible solution of the dual program (6).

Proof. The proof is essentially a straightforward adaptation of the proof of tra-
ditional weak duality for finite linear programs. Take a pair of feasible solutions
for the primal and the dual programs and consider the difference between the dual
objective (6) and the primal objective (5):
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(a) Feasible solutions z1, z2 to the two-items dual
program. Each function zj has to start at 0 on
the entire axis xj = 0 and rise to 1. At no point of
the two-dimensional cube the sum of their slopes
is allowed to exceed 3, and the objective is to
keep them as low as possible, i.e., minimize the
volume under their curves.

feasible
optimal

z(x)

1

x10 1/2

slo
pe

=
2

(b) For the special case of a single item, the dual
feasible function z has to start at 0 and rise to
1 or higher when x = 1, with a slope of at most
2. The optimal function minimizes the area be-
low it. It is not difficult to see that the optimal
solution is to remain at value 0 until x = 1/2
and then increase steadily to 1; the optimal dual
objective is equal to the gray area. This corre-
sponds exactly to the well-known optimal solu-
tion of Myerson with reserve price of 1/2.

Fig. 1. Geometric interpretation of the dual program (6) for the case of a single bidder and
m = 1, 2 uniform i.i.d. items.

m∑
j=1

∫
D

zj(x) dx +
n∑
i=1

∫
D

ui(x) ((m+ 1)f(x) + xi · ∇if(x)) dx(7)

−
n∑
i=1

m∑
j=1

∫
D−(i,j)

Hi,j ui(Hi,j ,x−(i,j)) f(Hi,j ,x−(i,j)) dx−(i,j)

+
n∑
i=1

m∑
j=1

∫
D−(i,j)

Li,j ui(Li,j ,x−(i,j)) f(Li,j ,x−(i,j)) dx−(i,j)

Using the constraints of the programs, the first two terms of this expression can be
bounded from below by

m∑
j=1

∫
D

zj(x)
n∑
i=1

∂ui(x)
∂xi,j

dx−
n∑
i=1

m∑
j=1

∫
D

si,j(x)
∂ui(x)
∂xi,j

dx(8)

+
n∑
i=1

∫
D

ui(x)

 m∑
j=1

∂zj(x)
∂xi,j

−
m∑
j=1

∂si,j(x)
∂xi,j

 dx

which equals

n∑
i=1

m∑
j=1

∫
D

∂ [(zj(x)− si,j(x))ui(x)]
∂xi,j

dx.
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Similarly, the other two terms of the expression can be bounded from below by

−
n∑
i=1

m∑
j=1

∫
D−(i,j)

ui(Hi,j ,x−(i,j))
(
zj(Hi,j ,x−(i,j))− si,j(Hi,j ,x−(i,j))

)
dx−(i,j)

(9)

+
n∑
i=1

m∑
j=1

∫
D−(i,j)

ui(Li,j ,x−(i,j))
(
zj(Li,j ,x−(i,j))− si,j(Li,j ,x−(i,j))

)
dx−(i,j)

and they cancel out the first two terms. Bringing everything together, the difference
of the dual and primal objectives is bounded from below by zero.

We can use weak duality to show optimality: it suffices to have a pair of feasible
primal and dual solutions that give the same value. In many cases, such as the case
of uniform distributions, computing the optimal value is not easy or it may not even
be expressible in a closed form. In such a case, a useful tool to prove optimality is
through complementarity. In fact, we will prove a slight generalization of traditional
linear programming complementarity which will allow us later to discretize the domain
and consider approximate solutions. Specifically, instead of requiring the product of
primal and corresponding dual constraints to be zero, we generalize it to be bounded
above by a constant:

Lemma 3.3 (Complementarity). Suppose that ui(x) is a feasible solution of the
primal program (4) and zj(x), si,j(x) is a feasible solution of the dual program (6).
Fix some parameter ε ≥ 0. If the following complementarity constraints hold for all
i ∈ [n], j ∈ [m] and a.e. x ∈ D,

ui(x) ·

(m+ 1)f(x) + xi · ∇if(x)−
m∑
j=1

∂zj(x)
∂xi,j

+
m∑
j=1

∂si,j(x)
∂xi,j

 ≤ εf(x),

ui(Li,j ,x−(i,j))·
(
Li,jf(Li,j ,x−(i,j))

−zj(Li,j ,x−(i,j)) + si,j(Li,j ,x−(i,j))
)
≤ εf(Li,j ,x−(i,j)),

ui(Hi,j ,x−(i,j))·
(
zj(Hi,j ,x−(i,j))

−si,j(Hi,j ,x−(i,j))−Hi,jf(Hi,j ,x−(i,j))
)
≤ εf(Hi,j ,x−(i,j)),

zj(x) ·
(

1−
n∑
i=1

∂ui(x)
∂xi,j

)
≤ εf(x),

si,j(x) · ∂ui(x)
∂xi,j

≤ εf(x),

then the primal and dual objective values differ by at most (n + m + 3nm)ε. In
particular, if the conditions are satisfied with ε = 0, both solutions are optimal.

Proof. We take the sum of all complementarity constraints and integrate in the
domain:
n∑
i=1

∫
D

ui(x)

(m+ 1)f(x) + xi · ∇if(x)−
m∑
j=1

∂zj(x)
∂xi,j

+
m∑
j=1

∂si,j(x)
∂xi,j

 dx

+
n∑
i=1

m∑
j=1

∫
D−(i,j)

ui(Li,j ,x−(i,j))
(
Li,jf(Li,j ,x−(i,j))

−zj(Li,j ,x−(i,j)) + si,j(Li,j ,x−(i,j))
)
dx−(i,j)
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+
n∑
i=1

m∑
j=1

∫
D−(i,j)

ui(Hi,j ,x−(i,j))
(
zj(Hi,j ,x−(i,j))

−si,j(Hi,j ,x−(i,j))−Hi,jf(Hi,j ,x−(i,j))
)
dx−(i,j)

+
m∑
j=1

∫
D

zj(x)

(
1−

n∑
i=1

∂ui(x)
∂xi,j

)
dx +

n∑
i=1

m∑
j=1

∫
D

si,j(x) · ∂ui(x)
∂xi,j

dx

≤ (n+m+ 3nm)ε.

It suffices to notice that the left-hand side is just the sum of (7), (8), and (9), so by
using the same transformations that we used to prove the weak duality lemma 3.2, it
is equal to the dual objective minus the primal objective.

4. The straight-jacket auction (SJA). In the rest of the paper we demon-
strate the power and usage of the duality framework developed in section 3, by ap-
plying it to the canonical open problem of revenue maximization in the economics
literature: that of a single bidder setting where item valuations come i.i.d. from a
uniform distribution over [0, 1]. Recall that now the general dual program (6) takes
the simple form shown in Remark 3.1, where the si,j variables do not appear since we
have chosen to relax even further the primal program (4) by dropping the nonnegative
derivatives constraint; this will end up being without loss to optimality.

The duality conditions are not only useful in establishing optimality; they can in
fact suggest the optimal auction in a natural way. We illustrate this by considering
the case of two items. Starting from Figure 1(a), we need to find two functions z1
and z2 that satisfy the boundary constraints and the slope constraint. If we had only
one function, say z1, the solution would be obvious and similar to the solution for
one item (Figure 1(b)): z1(x) would be 0 up to x1 = 2/3 and then increase with a
maximum slope of 3. But if we do the same for both functions z1 and z2, we obtain an
infeasible solution: in the square [2/3, 1]× [2/3, 1] the total slope would be 6 instead
of 3. This implies that the functions need more space to grow; in fact, the area of
growth needs to be at least equal to the area of the square [2/3, 1] × [2/3, 1]. The
natural way to get this space is to add a triangle of area 1/9 in the way indicated in
the left part of Figure 2 (the triangle defined by the lines xj = p1 = 2/3, j = 1, 2, and
x1 + x2 = p2). We then seek a dual solution in which only zj grows in area U{j} and
both functions grow in U{1,2} (Figure 2). The corresponding primal solution is that
only item j is sold in U{j} and both items are sold in U{1,2}.

The remarkable fact is that the optimal mechanism is completely determined by
the obvious requirement that the area of the triangle must be (at least) equal to
1/9. To put it in another way: suppose that we knew that the optimal mechanism is
deterministic; then the dual program requires that

• the price p1 for one item must satisfy p1 ≤ 2/3 so that z1 has enough space
to grow from 0 to 1 with the maximum slope 3;

• the price p2 for the bundle of both items must be such that the area of the
region U∅ = U{1} ∪ U{2} ∪ U{1,2}, in which the mechanism allocates at least
one item, is at least 2/3 so that both functions have enough space to grow
to 1

The central point of this work is that these necessary conditions (which we call slice
conditions) are also sufficient. This intuition naturally extends to more items: the
price for a bundle of r items is determined by the slice condition that the r-dimensional
volume in which the mechanism sells at least one item of the bundle is exactly equal
to r/(m+ 1).
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x2

x10 1

1

p1

p2 − p1

p2 − p1

p1

U{1,2}

U∅

U{1}

U{2}

x1 + x2 = p2

Fig. 2. The allocation spaces of the optimal SJA mechanisms for m = 2 and m = 3 items.
The payments are given by p1 = m

m+1 , p2 = 2m−
√

2
m+1 , and p3 = 3− 7.0971

m+1 . The mechanism sells at

least one item within the gray areas U∅, and all items within the dark gray areas U[m]. If we flip
around these dark gray areas by x 7→ 1−x, so that 1 is mapped to the origin 0, they are exactly the
SIM-bodies defined in subsection 6.1, for k = 1

m+1 . These SIM-bodies can be seen in Figures 3(a)
and 3(b), respectively.

Using this intuition, we define here the straight-jacket auction (SJA). This selling
mechanism is deterministic and symmetric; as such, it is defined by a payment vector
p(m) = (p(m)

1 , . . . , p
(m)
m ); p(m)

r is the price offered by the mechanism to the bidder
for every subset of r items, r ∈ [m]. We will drop the superscript when there is no
confusion about the number of available items. The utility of the bidder is then given
by u(x) = maxJ⊆[m](

∑
j∈J xj − p|J|).

The prices are defined by the slice conditions. For a subset of items J ⊆ [m], let
Pr(J,x−J) be the probability that at least one item in J is sold when the remaining
items have values x−J . The rth dimensional slice condition is that for every J with
|J | = r and every x−J : Pr(J,x−J) ≥ |J |/(m + 1). The SJA is the deterministic
mechanism which satisfies the slice conditions for all dimensions as tightly as possible
(hence its name), in the following sense: determine the prices p1, p2, . . . , pm in this
order so that, having fixed the previous ones, select pr as large as possible to satisfy all
r-dimensional slice conditions. In particular, this guarantees that the m-dimensional
slice is tight, or equivalently, that the probability that at least one item is sold is
m/(m+ 1).

Definition 4.1 (Straight-jacket auction (SJA)). SJA for m items is the deter-
ministic symmetric selling mechanism whose prices p(m)

1 , . . . , p(m)
m , where p(m)

r is the
price of selling a bundle of size r, are determined as follows: for each r ∈ [m], having
fixed p(m)

1 , . . . , p(m)
r−1, price p(m)

r is selected to satisfy

(10) Prx∼Um

 ∧
J⊆[r]

∑
j∈J

xj < p
(m)
|J|

 = 1− r · k,

where k = 1
m+1 . In words, p(m)

r is selected so that the probability of selling no item
when r values are drawn from the uniform probability distribution (and the remain-
ing values of the m − r items are set to 0) is equal to 1 − r · k. We will refer to
constraints (10) as slice conditions.
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If we take the complement of the above probability, an equivalent definition would be
to ask for the probability of selling at least one of items [r], when all other bids for
items [r + 1 . . .m] are fixed to zero, to be rk. That is, if for any dimension m and
positive α1, α2, . . . , αm we define

(11) V (α1, . . . , αm) ≡

x ∈ Im
∣∣∣∣∣∣
∨

J⊆[m]

∑
j∈J

xj ≥ α|J|

 ,

the volume of the r-dimensional body V (p(m)
1 , . . . , p

(m)
r ), let’s denote it by v(p(m)

1 , . . . ,

p
(m)
r ), must be rk (for all r ∈ [m]). Notice also that it is not immediate that SJA

is in general well defined for any dimension m: there should exist prices p(m)
r that

satisfy (10).
The specific value on the right-hand side of (10) depends on the parameter k,

which, in turn, depends on the total number of items m; the exact dependence arises
from the specific values of the primal and dual program. It is, however, useful in
providing a unifying approach to carry out the discussion and analysis for an arbitrary
(albeit small, k ≤ 1

m+1 ) parameter k and to plug in the specific value k = 1/(m+ 1)
only when this is absolutely necessary.

The main technical result of this work is showing that the SJA mechanism is
optimal for m ≤ 6:

Theorem 4.2. The straight-jacket auction is a revenue optimal mechanism for
selling up to six goods to a single additive buyer having uniformly i.i.d. valuations
over [0, 1].

Our proof of this theorem relies significantly on the geometry of these mechanisms.
We conjecture that the theorem holds for any number of items:

Conjecture 4.3. The straight-jacket auction is a revenue optimal mechanism
for selling any number of goods to a single additive buyer having uniformly i.i.d.
valuations over [0, 1].

Here is how to use the slice conditions (10) to compute the prices of SJA: The
one-dimensional condition on a one-dimensional hypercube simply means that p(m)

1 =
1 − 1/(m + 1), because we only have condition x1 < p

(m)
1 . The two-dimensional

condition on a two-dimensional boundary requires that the region {x : x1 + x2 <
p2 and x1 < p1 and x2 < p1} inside the unit square must have area equal to 1 −
2/(m + 1). In other words, we want to find where to move the line x1 + x2 = p2 so
that the area that it cuts satisfies the slice condition (in the left panel of Figure 2, U{1},
U{2}, and U{1,2} have total volume 2/(m+ 1)); this gives p2 = 2− (2 +

√
2)/(m+ 1).

We can proceed in the same way to higher dimensions: fix some dimension m and an
order r > 1. If the prices p1, p2, . . . , pr are such that pj − pj−1 is a nonnegative and
(weakly) decreasing sequence, then

v (p1, . . . , pr) =
∫ pr−pr−1

0
v (p1, . . . , pr−1) dt+

∫ pr−1−pr−2

pr−pr−1

v (p1, . . . , pr−2, pr − t) dt

(12)

+ · · ·+
∫ p1

p2−p1
v (p2 − t, . . . , pr−1 − t, pr − t) dt+

∫ 1

p1

1 dt.

This is a recursive way to compute the expressions for the volumes v(p1, . . . , pr). In
case that the sequence p1, p2, . . . , pr of the prices up to order r breaks the requirement
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to be increasing at the last step, i.e., pr < pr−1, then simply v(p1, . . . , pr) = v(p1, . . . ,
pr−2, pr, pr) and we can still deploy the previous recursion.

An exact, analytic computation of these values for up to r = 6 using the above
recursion is given in [14], but we also list them below for quick reference. In the
following we will often use the transformation

(13) pr = r − µr
m+ 1

so that prices will be determined with respect to some parameters µr. It will be
algebraically convenient to also assume p0 = 0.

• For r ≤ 4 and any number of items m ≥ r,

p1 =
m

m+ 1
, p2 =

2m−
√

2
m+ 1

, p3 ≈ 3− 7.0972
m+ 1

, p4 ≈ 4− 11.9972
m+ 1

,(14)

µ1 = 1, µ2 = 2 +
√

2, µ3 ≈ 7.0972, µ4 ≈ 11.9972.

• For r = 5, 6,

p
(5)
5 ≈ 1.9856, p5 ≈ 5− 18.0843

m+ 1
(m ≥ 6), p

(6)
6 ≈ 2.3774,(15)

µ
(5)
5 ≈ 18.0865, µ5 ≈ 18.0843 (m ≥ 6), µ

(6)
6 ≈ 25.3585.

4.1. Optimality of SJA. In this section we gather the key elements that form
the backbone of our proof for the optimality of the SJA mechanism.

Definition 4.4. We denote by U
(m)
J the subdomain in which SJA allocates ex-

actly the bundle J ⊆ [m] of items:

(16) U
(m)
J ≡

x ∈ Im
∣∣∣∣∣∣
∧

L⊆[m]

∑
j∈J

xj − p(m)
|J| ≥

∑
j∈L

xj − p(m)
|L|

 .

Let U (m)
J |−J:t denote the |J |-dimensional slice of U (m)

J when we fix the values of
the remaining [m] \ J items to t:

U
(m)
J

∣∣∣
−J:t

= {xJ : (xJ , t) ∈ UJ}.

For example, the slices of U (m)
{1} are the horizontal (one-dimensional) intervals; when

J = [m], U (m)
J has only one slice, itself. Figure 2 shows the various subdomains U (m)

J

for m = 2, 3.
We next define the notion of deficiency of a body, which is one of the key geometric

ingredients in this paper. It captures how large an m-dimensional body A is with
respect to its (m − 1)-dimensional projections, which are denoted by A[m]\{j} (see
the beginning of the next section for a formal definition). The k-deficiency is the
difference of the volume |A| of the body A minus the volumes k

∣∣A[m]\{j}
∣∣ of each

m-dimensional prism that results when we extend a (m − 1)-dimensional projection
by height k. This is inspired by the deficiency notion in bipartite graphs defined by
Ore [29].

Definition 4.5 (Deficiency). For any k > 0, we will call k-deficiency of an
m-dimensional body A ⊆ Rm+ the quantity

(17) δk(A) ≡ |A| − k
m∑
j=1

∣∣A[m]\{j}
∣∣ .
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From now on we will sometimes drop the subscript in the deficiency notation δk
whenever it is clear from the context what k we are referring to, or if we want to make
a general statement that holds for all values of parameter k (see, e.g., Lemma 5.2).

Definition 4.6 (SIM-bodies). For positive α1 ≤ · · · ≤ αr, let

(18) Λ(α1, . . . , αr) ≡

x ∈ Rr+

∣∣∣∣∣∣
∧
J⊆[r]

∑
j∈J

xj ≤
r∑

j=r−|J|+1

αj

 .

We call these SIM-bodies.4 We will also use the following notation:

q · Λ(α1, . . . , αr) ≡ Λ(q · α1, . . . , q · αr)

for any positive real q.

It turns out that SIM-bodies (see Figure 3) are essentially the building blocks of the
allocation space of SJA:

Lemma 4.7. Every nonempty slice U (m)
J |−J:t of SJA is isomorphic to the SIM-

body k ·Λ(λ(m)
1 , . . . , λ

(m)
|J| ), where k = 1/(m+ 1). The parameters λ(m)

r depend on the
payments of SJA as follows:

(19) λ(m)
r ≡ µ(m)

r − µ(m)
r−1,

where µ(m)
r is defined in (13).

This essentially establishes a correspondence between SJA subdomains U (m)
J and SIM-

bodies Λ(λ(m)
1 , . . . , λ

(m)
|J| ), for every J ⊆ [m]. The main geometric property of SJA is

captured by the following theorem, the proof of which appears in section 7.

Theorem 4.8. For m≤ 6 and for the λ’s defined in (13), no SIM-body Λ(λ(m)
1 , . . . ,

λ
(m)
|J| ) corresponding to a nonempty subdomain U (m)

J contains positive 1-deficiency sub-
bodies.

Using this geometric property, we prove in section 7 the optimality of SJA:

Theorem 4.9. If for every nonempty subdomain U
(m)
J of SJA the corresponding

SIM-body Λ(λ(m)
1 , . . . , λ

(m)
|J| ) contains no sub-bodies of positive 1-deficiency, then SJA

is optimal.

Notice that the last theorem applies to any number of items, but the proof of opti-
mality is restricted to six items by Theorem 4.8. The rest of the paper focuses in
formalizing these notions and proving the above theorems.

5. Bodies and Deficiencies. In this section we develop the geometric theory
that captures the critical structural properties of SJA mechanisms and use this to
prove our main result, Theorem 4.2, that shows their optimality. First we will need
to establish some notation and formally define some notions.

For any positive integer m, an m-dimensional body A is any compact subset of the
nonnegative orthant A ⊆ Rm+ . We will denote its volume simply by |A| ≡ µ(A) (where

4The naming is inspired by the familiar, characteristic shape of mobile phone SIM cards; see
Figure 3(a) for the apparent resemblance in two-dimensional space.
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µ is the standard m-dimensional Lebesgue measure). For any index set J ⊆ [m], the
projection of A with respect to the J coordinates is defined as

A[m]\J ≡ {x−J | x ∈ A}

and is the remaining body of A if we “delete” coordinates J . For any r ∈ [m], index
set J ⊆ [m] with |J | = m− r and t ∈ Rm−r+ we define the slice of A above the point
t with respect to coordinates J as

A|J:t ≡ {x−J | x ∈ A ∧ xJ = t} .

It is the remaining of the body A if we fix a vector t at coordinates J . The opera-
tions of projecting and slicing bodies commute with each other, that is, A[m]\I |J:t =
(A|J:t)[m]\I for all disjoint sets of indices I, J ⊆ [m] and |J |-dimensional vector t.

For any set of points S ⊆ Rm+ we denote their convex hull by H(S) and for any
vector x we will denote by P(x) the set of all permutations of x. We will say that
a body A is downwards closed if, for any point of A, all points below it are also
contained in A: y ∈ A for all y ∈ Rm+ with y ≤ x ∈ A. Body A will be called
symmetric if it contains all permutations of its elements: P(x) ⊆ A for all x ∈ A. If
an m-dimensional body A is symmetric then one can define its width to be the length
of its projection towards any axis: w(A) ≡ |A{j}| for any j ∈ [m]. In a similar way, if
A ⊆ S we will say that A is upwards closed (with respect to S) if, for any x ∈ A, we
have y ∈ A for any x ≤ y ∈ S. For any set of points S ⊆ Rm+ , its downwards closure
is defined to be all points below it: D(S) =

{
x ∈ Rm+ | ∃y ∈ S : x ≤ y

}
. Finally, we

describe a property that will play a key role in the following:

Definition 5.1 (p-closure). We will say that a body A is p-closed if it contains
the convex hull of the permutations of any of its elements. Formally: H(P(x)) ⊆ A
for all x ∈ A.

Notice that any p-closed body must be symmetric (but not necessarily convex) and
that any convex symmetric body is p-closed.

A useful, trivial to prove property of the deficiency function (see Definition 4.5)
is that it is supermodular :

Lemma 5.2. For any bodies A1, A2,

δ(A1 ∪A2) + δ(A1 ∩A2) ≥ δ(A1) + δ(A2).

The next lemma tells us that “leaving gaps” between the points of bodies and the
orthant’s faces can only reduce the deficiency.

Lemma 5.3. For any bodies A,B such that B ⊆ A and A is downwards closed,
there exists a downwards closed sub-body B̃ ⊆ A such that δ(B̃) ≥ δ(B).

Instead of proving this lemma, we provide a stronger construction, given by the fol-
lowing Lemma 5.4.

Lemma 5.4. Let Am be the set of m-dimensional bodies and Km ⊆ Am be the
set of downwards closed ones. There is a mapping χ : Am → Km such that for any
A,B ∈ Am

1. |χ(A)| = |A| and, for every J ⊆ [m], |χ(A)J | ≤ |AJ |.
2. χ(A) ∪ χ(B) ⊆ χ(A ∪B). Equivalently, A ⊆ B implies χ(A) ⊆ χ(B).
3. If A ∈ Km then χ(A) = A.
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It is straightforward to see how Lemma 5.4 implies Lemma 5.3, by taking B̃ =
χ(B). Then, B̃ has the same volume as B and (weakly) smaller projections (prop-
erty 1). This directly implies that δ(B̃) ≥ δ(B). It is also a subset of A (by prop-
erty 2): B̃ = χ(B) ⊆ χ(A) = A; the last equality follows from the fact that A is
already downwards closed and thus invariant under χ (property 3).

Proof of Lemma 5.4. The lemma is proved by induction on m. For m = 1 it is
trivial: χ(A) is the interval starting at 0 with length equal to |A|.

Fix now a coordinate j ∈ [m] and consider the (m− 1)-dimensional slices A|{j}:t
of A, ranging over t. Apply the lemma recursively (that is, use function χ by the
induction hypothesis from the previous dimension) to each such slice to obtain a
body A′. Let χ′ be this map from Am to Am, i.e., χ′(A) = A′. Notice that A′ may
not be downwards closed, but we argue that χ′ satisfies all three properties.

Indeed, for property 1, we have two cases: If j ∈ J then, by using property 1, we
get

|A′J | =
∫
t

∣∣∣A′J |{j}:t∣∣∣ =
∫
t

∣∣∣(A′|{j}:t)
J

∣∣∣ =
∫
t

∣∣∣(χ′(A|{j}:t))
J

∣∣∣
≤
∫
t

∣∣∣(A|{j}:t)
J

∣∣∣ =
∫
t

∣∣∣AJ |{j}:t∣∣∣ = |AJ | .

In particular, the above holds with equality when J = [m]. Otherwise, if j 6∈ J , we
have

|A′J | =
∣∣∣∣∣
(⋃

t

A′|{j}:t

)
J

∣∣∣∣∣ =

∣∣∣∣∣
(⋃

t

χ′
(
A|{j}:t

))
J

∣∣∣∣∣
≤
∣∣∣∣∣
(
χ′
(⋃

t

A|{j}:t

))
J

∣∣∣∣∣ ≤
∣∣∣∣∣
(⋃

t

A|{j}:t

)
J

∣∣∣∣∣ = |AJ | ,

the first inequality holding due to property 2 and the second one due to the inequality
at property 1.

Property 2 is also satisfied because, if A ⊆ B, then for every t A|{j}:t ⊆ B|{j}:t,
and thus by induction χ′(A|{j}:t) ⊆ χ′(B|{j}:t), therefore

x ∈ χ′(A) =⇒ x−j ∈ χ′(A|{j}:xj
) =⇒ x−j ∈ χ′(B|{j}:xj

) =⇒ x ∈ χ′(B).

Property 3 is satisfied since if A is already downwards closed, its slices are also
downwards closed and, by induction, they will remain unaffected by χ′.

If A is downwards closed with respect to some coordinate i ∈ [m], then χ′(A) will
remain closed downwards with respect to i: It is obvious by induction that χ′ preserves
downwards closure for every coordinate i 6= j. For coordinate i = j, it suffices to notice
that downwards closure of A is equivalent to A|{j}:t ⊆ A|{j}:t′ for all t ≥ t′. Since χ′

satisfies property 2, the same holds for their images: χ′(A|{j}:t) ⊆ χ′(A|{j}:t′).
Map χ′ is not the desired map because if A is not already downwards closed with

respect to j, the result may not be downwards closed. However, we can select another
coordinate j′ 6= j to create another map χ′′ similar to χ′. Since χ′′ will satisfy all
properties and preserve the downwards closure of coordinate j′, we conclude that
χ = χ′′ ◦ χ′ has all the desired properties.

The supermodularity of deficiency functions (Lemma 5.2) immediately implies
that if bodies A1, A2 ⊆ S are of maximum deficiency (within S), then both their
union and intersection are also of maximum deficiency. Based on this, the following
can be shown:
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Lemma 5.5. For any downwards closed and symmetric body A, there is a maxi-
mum volume sub-body of A of maximum deficiency, which is also downwards closed
and symmetric.

Proof. Let B ⊆ A be of maximum deficiency. Then, by Lemma 5.3 there exists
a downwards closed B̃ ⊆ A such that δ(B̃) ≥ δ(B), and, due to the maximum
deficiency of B, it must be that δ(B̃) = δ(B). Now, let B̃1, B̃2, . . . , B̃m! be all possible
permutations of the body B̃ (within the m-dimensional space) and take their union
B̂ =

⋃m!
i=1 B̃i. This new body B̂ is clearly symmetric. Also, because of the symmetry

of A, all B̃i remain within A, so B̂ ⊆ A.
Now notice that all Bi’s have δ(B̃i) = δ(B̃), so they also have maximum deficiency

within A. Remember that the deficiency function is supermodular (Lemma 5.2), so
the union of maximum deficiency sets must also be of maximum deficiency. Thus, B̂
is indeed of maximum deficiency. Finally, it is not difficult to see that union preserves
downwards closure and also, trivially, |B̂| ≥ |B̃|.

The next lemma describes how global maximum deficiency implies also a kind of
local one:

Lemma 5.6. Let A ⊆ S be a maximum deficiency body (within S). Then, every
slice of A must have nonnegative deficiency and must not contain subsets with higher
deficiency.

Proof. To get to a contradiction, suppose that there exists such a slice B = A|J:t
of A, such that δ(B) < 0. Then, let’s remove the entire slice B above t from body A, to
get a new body A′. This (m−1)-dimensional slice though is of measure 0 in the larger
m-dimensional space, so what we should really do is to remove an ε-neighborhood of
B (around t) within A, of “parallel” slices. This neighborhood has a volume of
positive measure and is arbitrarily close to the slice.5 This section removed from
the body had the property of having volume strictly less than k times its projections
with respect to the coordinates not in J , i.e., the “active” coordinates in B (because
we are working close to B for which δ(B) < 0). Regarding the other remaining
projections with respect to the coordinates in J , by removing points they cannot
possibly be increased. Since volumes have positive sign effect at the expression (17)
of the deficiency function, and projections have negative sign, we can deduce that the
resulting body has strictly higher deficiency than A, which contradicts the maximum
deficiency of A within S.

The proof for subsets of the slice with higher deficiency is similar: replace the en-
tire slice with its subset of higher deficiency, and the total deficiency must
increase.

As a consequence of Lemma 5.6 we get the following properties of maximum
deficiency sub-bodies, which imply that these bodies must be “large enough” (Lem-
mas 5.8 and 5.9) and also demonstrate some kind of “symmetric convexity” (p-closure
Lemma 5.10, Definition 5.1). But first we will need an inequality that brings together
volumes and projections of bodies, due to Loomis and Whitney [22]. An easy proof
of this can be found in [2].

Lemma 5.7 (Loomis–Whitney). For any m-dimensional body A,

|A|m−1 ≤
m∏
j=1

∣∣A[m]\{j}
∣∣ .

5For ease of presentation, in the following we will use that procedure without making explicit
mention to the underlying technicalities.
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Lemma 5.8. Let A 6= ∅ be an m-dimensional body with nonnegative k-deficiency.
Then

|A| ≥ (km)m.

As a consequence, if A is also symmetric and downwards closed, its width must be
at least

w(A) ≥ km.
Proof. Since δk(A) ≥ 0, we know that |A| ≥ k∑m

j=1

∣∣A[m]\{j}
∣∣ , or equivalently

m∑
j=1

∣∣A[m]\{j}
∣∣ ≤ |A|

k
.(20)

Also, by the Loomis–Whitney inequality (Lemma 5.7), |A|m−1 ≤ ∏m
j=1 |A[m]\{j}|;

so, by using the arithmetic-geometric means inequality we can derive that |A|m−1 ≤
( 1
m

∑m
j=1 |A[m]\{j}|)m, or equivalently

m∑
j=1

∣∣A[m]\{j}
∣∣ ≥ m |A|m−1

m .(21)

Combining (20) and (21) we get m |A|
m−1

m ≤ |A|k , which completes the proof of the
lemma (since |A| 6= 0). The inequality involving the body’s width follows immediately
from the observation that every symmetric and downwards closed body A is included
in the m-dimensional hypercube with edge length w(A).

Lemma 5.9. If A is a nonempty, symmetric, downwards closed body with non-
negative k-deficiency then it must contain the point (k, 2k, . . . ,mk). More generally,
it must contain the point (k, 2k, . . . , (m− 1)k,w(A)).

Proof. We will recursively utilize Lemmas 5.6 and 5.8 to show that points

(mk,0m−1), (mk, (m− 1)k,0m−2), . . . , (mk, (m− 1)k, . . . , k)

belong to Â, where Â is a symmetric, downwards closed sub-body of A of maximum
deficiency (see Lemma 5.5). By Lemma 5.8 it must be that that w(Â) ≥ mk, thus
(mk,0m−1) ∈ Â by downwards closure. For the next dimension, consider the slice
Â|{j}:mk (for some j ∈ [m]). It is (m − 1)-dimensional, of nonnegative deficiency by
Lemma 5.6, and so it must have width at least (m − 1)k (Lemma 5.8). That means
that point (mk, (m− 1)k,0m−2) must be in Â. We can continue like this all the way
down to single-dimensional lines.

Lemma 5.10 (p-closure). Let A ⊆ S be a maximum volume sub-body of S of
maximum deficiency and let S be p-closed and downwards closed. Then every slice of
A (including A itself) must be p-closed (see Definition 5.1).

Proof. Without loss (by Lemma 5.5) A can be assumed to be symmetric and
downwards closed. We need to prove that, for any r ∈ [m] (r is the dimension of
the slice) and any r-dimensional vector x and z ∈ H(P(x)) in the convex hull of its
permutations,

for all t : (x, t) ∈ A =⇒ (z, t) ∈ A.
The proof is by induction on r. For the base case of r = 1, it is H(P(x)) = {x} so

the proposition follows trivially. For the induction step, assume the proposition is true
for some r ≤ m−1 and we will prove it for r+ 1. So, take (r+ 1)-dimensional vectors
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x and z such that z ∈ H(P(x)) and fix some t ∈ Rm−r−1
+ . To complete the proof we

need to show that the slice of A above x, with respect to the first r+ 1 coordinates, is
included within the one above z, i.e., A|[r+1]:x ⊆ A|[r+1]:z. For simplicity, let’s abuse
notation for the remaining of this proof and just use Ax and Az for these slices.

So, to arrive at a contradiction, let’s assume that Ax \ Az 6= ∅. First notice that
Ax∩Az ⊆ Ax and Ax is a slice of a maximum deficiency body; by Lemma 5.6 it must
be that δ(Ax ∩Az) ≤ δ(Ax). So, by the supermodularity of deficiencies (Lemma 5.2)
we get that

δ(Ax ∪Az) ≥ δ(Az).

This means that if we replace (an ε-neighborhood around z of) slice Az by its superset
Ax∪Az and we can also show that no new projections are created with respect to the
first r+ 1 coordinates, then the overall deficiency of the body would not decrease and
its volume would increase strictly (since we have assumed that Ax \ Az 6= ∅), which
is a contradiction to the maximum deficiency of A within S. Notice a subtle point
here: How do we know that this extension can fit within S above point z? It does,
because we have assumed S to be p-closed and the new elements added are convex
combinations of permutations of elements already known to be in S. The remainder
of the proof is dedicated to proving that this extension indeed does not create new
projections with respect to the first r + 1 coordinates.

Without loss, due to symmetry, we can take x1 ≤ x2 ≤ · · · ≤ xr+1. We argue
that, if we remove any one of the coordinates of the vector z, it can be dominated
by a convex combination of permutations of the vector x−1 (i.e., the vector x if we
remove its smallest coordinate). To see that, remember that z is at the convex hull
of the permutations of x, so there exist nonnegative real parameters {ξπ} such that

z =
∑

π∈P(x)

ξππ and
∑

π∈P(x)

ξπ = 1.

But that means that

(22) z−j =
∑

π∈P(x)

ξππ−j

for any coordinate j.
Let’s define a transformation φ over all vectors {π−j | π ∈ P(x) and j ∈ [r + 1]}

such that φ(π−j) = π−j if the jth coordinate removed from π to get π−j was x1, and
otherwise φ(π−j) is the r-dimensional vector that we get if we replace x1 in π−j by
the coordinate πj that was removed. It follows that for all j

π−j ≤ φ(π−j) and φ(π−j) ∈ P(x−1),

so by (22)
z−j ≤

∑
π∈P(x)

ξπφ(π−j) ∈ H(P(x−1)).

By the induction hypothesis and downwards closure for A it can be deduced that

(x−1, 0, t) ∈ A =⇒ (z−j , 0, t) ∈ A for all j ∈ [r + 1].

Thus in particular for every t ∈ Ax, due to symmetry of A, we have that ((z−j , 0), t) ∈
A, which means that indeed every projection of (z, t) with respect to a coordinate in
[r + 1] was already included in A.
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x2

x1

Λ(λ1, λ2)

λ2

λ2

(λ2, λ1)

(λ1, λ2)

x1 + x2 = µ2

0

Λ(λ1)

Λ(λ1)

(a) The two-dimensional SIM-body Λ(λ1, λ2) (b) The three-dimensional SIM-body Λ(λ1, λ2, λ3)

Fig. 3. SIM-bodies for dimensions m = 2, 3. Notice the recursive nature of these construc-
tions: a SIM-body encodes in it the SIM-bodies of lower dimensions as extreme slices (property 3 of
Lemma 6.1). In this figure, these one-dimensional critical bodies are denoted by thick lines (blue in
the color version of the paper) and the two-dimensional ones in light gray.

6. Decomposition of SJA into SIM-bodies.

6.1. SIM-bodies. Remember that in Definition 4.6 we introduced the notion of
a SIM-body Λ(α1, . . . , αr): for parameters α1 ≤ · · · ≤ αr, it is the set of all vectors
x ∈ Rr+ satisfying conditions

∑
j∈J xj ≤

∑r
j=r−|J|+1 αj for all J ⊆ [r].

The geometry of the allocation space of the SJA mechanisms (see Figure 2) nat-
urally gives rise to this family of bodies. Their importance and connection with the
structure of the SJA mechanisms will become evident in subsection 6.2, where we
prove Lemma 4.7. The intuition behind the naming becomes obvious if one looks
at Figure 3(a). By the way SIM-bodies are defined, one can immediately see that
they are downwards closed, symmetric, and convex polytopes. Thus, they are also
p-closed. Each one of its faces corresponds to a defining hyperplane∑

j∈J
xj = αr+1−|J| + · · ·+ αr

for some J ⊆ [r] or, of course, to a side of the r-dimensional positive orthant Rm+ .
SIM-bodies demonstrate some inherently recursive and symmetric properties, cap-

tured by the following lemma. They are made clear in Figure 3.

Lemma 6.1. For any SIM-body Λ = Λ(α1, . . . , αr),
1. w(Λ) = αr
2. Λ = D(H(P(α1, . . . , αr)))
3. Λ|{j}:αr

= Λ(α1, . . . , αr−1) for any j ∈ [r]
4. Λ[r]\{j} = Λ(α2, . . . , αr) for any j ∈ [r]
5. δq·k(q · Λ) = qr · δk(Λ) for any q, k > 0

Proof. Property 1 is trivial: by the definition of SIM-bodies (18), a point (x,0r−1)
∈ Λ if and only if x ≤ αr ∧ · · · ∧ x ≤ α1 + · · ·+ αr, i.e., x ≤ αr.

For property 2, let E be the set of the extreme points of the polytope Λ. It
is convex, thus Λ = H(E). But it is also downwards closed, so we can just focus
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on the extreme points E ⊆ E that belong to the “full” facet of the hyperplane
x1+· · ·xr = α1+· · ·+αr, since the entire polytope can be recovered as the downwards
closure Λ = D(H(E)). By taking intersections with the other hyperplanes and keeping
in mind that the αj ’s are nondecreasing, we get that these extreme points in E are
(α1, α2, . . . , αr) and all its permutations. So, we can recover the entire SIM-body as
Λ = D(H(P(α1, . . . , αr))).

For property 3, notice that an (r − 1)-dimensional vector x belongs in the slice
Λ|{j}:αr

if and only if (x, αr) ∈ Λ, which by using (18) is equivalent to

∧
J⊆[r−1]

(∑
i∈J

xi ≤ αr+1−|J| + · · ·+ αr

) ∧
J⊆[r−1]

(
αr +

∑
i∈J

xi ≤ αr−|J| + · · ·+ αr

)
.

The second set of conditions can be rewritten simply as

(23)
∧

J⊆[r−1]

∑
i∈J

xi ≤ αr−|J| + · · ·+ αr−1,

which makes the first set of constraints redundant since αr−|J|+· · ·+αr−1 ≤ αr+1−|J|+
· · ·+ αr from the monotonicity of the sequence of αr’s. The constraints (23) that we
are left with exactly define Λ(α1, . . . , αr−1) (see (18)).

Property 4 can be shown in a very similar way: due to downwards closure, any
projection Λ[r]\{j} is just the slice Λ|{j}:0.

Finally, property 5 is a result of scaling: q · Λ and Λ are similar by a scaling
factor of q, so the ratio of their volumes is qr and the ratio of their projections is
qr−1. In formula (17) that defines deficiencies, the volumes of the projections are
also multiplied by the parameter k of the deficiency, resulting in an overall ratio of qr

between the two deficiencies.

6.2. Decomposition of SJA. In this section we bring together all the necessary
elements needed to prove Lemma 4.7. We study the structure of the allocation space
of SJA that reveals an elegant decomposition which demonstrates that the SIM-bodies
essentially act as building blocks for SJA.

First of all, we need to get a closer look at SJA’s payments and demonstrate
some of their interesting characteristics. The way in which the SJA payments are
constructed makes them satisfy a kind of “contraction” property:

Lemma 6.2. The prices of the SJA mechanism have nonincreasing differences, i.e.,

p(m)
r − p(m)

r−1 ≤ p
(m)
r−1 − p

(m)
r−2

for all r = 2, . . . ,m.

Proof. Fix some dimension m and assume that we have computed prices of SJA
up to p1, p2, . . . pr−1 for some 2 ≤ r ≤ m. First we will show that

(24) (r − 1)pr ≤ rpr−1,

i.e., that the price pr must be in [0, r
r−1pr−1]. We will do that by showing that

otherwise this price would be redundant, in the sense that for any pr > r
r−1pr−1 the

sub-body of Ir defined by ∧
J⊆[r]

∑
j∈J

xj < p|J|,
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and whose volume must be exactly 1− rk in Definition 4.1, would remain unchanged
and equal to the one defined by

(25)
∧
J⊆[r]
|J|≤r−1

∑
j∈J

xj < p|J|.

Indeed, the body defined from (25) is a downwards closed, symmetric convex
polytope and for the newly inserted hyperplane x1 + · · ·+ xr = pr to have any effect
on it, i.e., to have a nonempty intersection with it, it must be that this hyperplane’s
“symmetric point” (pr/r, . . . , pr/r) belongs already to the interior of the body in (25)
(this is due to the symmetry and convexity of the body). So, this point must satisfy
the (r − 1)-dimensional condition x1 + · · · + xr−1 ≤ pr−1, thus (r − 1)(pr/r) ≤ pr−1
which is exactly property (24).

To show that pr − pr−1 ≤ pr−1 − pr−2 for all 2 ≤ r ≤ m, or equivalently pr ≤
2pr−1 − pr−2, by (24) it is enough to show that r

r−1pr−1 ≤ 2pr−1 − pr−2. But this is
equivalent to (r − 1)pr−2 ≤ (r − 2)pr−1 which we know holds, also from (24).

Normalized payments. By the procedure of defining SJA payments (Definition 4.1),
it can be the case that price pr is smaller than pr−1, i.e., pr ∈ [pl, pl+1] for some l ≤
r − 2. This is perfectly acceptable, and it just means that essentially we render older
prices that are above pr redundant, in the sense that setting pj ← pr for all j < r with
pj ≥ pr would not have an effect on the sub-body

∧
J⊆[r]

∑
j∈J xj < p|J| of Ir used in

the definition of SJA in (10). This because x1 + · · ·+ xr ≤ pr =⇒ x1 + · · ·+ xj ≤ pj
(since j < r and pr ≤ pj), so old conditions x1 + · · · + xj ≤ pj have become use-
less. In particular, notice how this is the case for the full-bundle price p(m)

m when
m = 5, 6: from (14) and (15) we see that indeed p

(5)
5 ≈ 1.9856 < 2.0005 ≈ p

(5)
4 and

p
(6)
5 ≈ 2.3774 < 2.4165 ≈ p(6)

6 . This means that no bundle of m−1 items is ever going
to be sold under the SJA mechanism for m = 5 or m = 6:

(26) U
(5)
[4] = U

(6)
[5] = ∅.

Furthermore, by the nonincreasing differences property of the SJA payments
(Lemma 6.2), every new payment after r will continue to fall below the previous
one. So, at the end the situation will be in the form of

(27) p1 ≤ · · · ≤ pl ≤ pm ≤ · · ·

for some l < m and, as we discussed above, there will be absolutely no effect on the
mechanism if we update all older payments that have ended up above pm to “collapse”
to pm, i.e.,

(28) p1 ≤ · · · ≤ pl ≤ pm = pm−1 = pm−2 = · · · = pl+1.

Rigorously, we redefine

p
(m)
j ← p(m)

m for all j ∈ [m− 1] with pj ≥ pm.

While this normalization has no effect on the SJA mechanism itself, it makes sure
that payments are now given in a nondecreasing order, which is an elegant property
that will simplify our exposition later on.

An important observation is that this normalization of payments does not break
the property of the nonincreasing differences of the payments of SJA, i.e., Lemma 6.2



146 YIANNIS GIANNAKOPOULOS AND ELIAS KOUTSOUPIAS

continues to hold: having a look at the transition before and after the normalization
process from (27) to (28) we see that all the differences up to the lth payment remain
unchanged, pl+1−pl can only decrease and all differences above the (l+1)th payment
have just collapsed to 0.

From now on and for the remaining of this paper we will assume that SJA pay-
ments are normalized. The only difference that this makes, for up to m = 6 dimen-
sions, to the values of the payments we have already computed at (14) and (15) in
section 4 is that for m = 5, 6 we have that

p
(5)
4 ← p

(5)
5 and p

(6)
5 ← p

(6)
6 ,

which gives by (13) that also the µ(m)
r parameters are updated to µ

(m)
m−1 ← µ

(m)
m −

(m+ 1):

µ
(5)
4 ≈ 12.0865, µ

(6)
5 ≈ 18.3585.

Recall the definition λr ≡ µr −µr−1 from (19). These are the critical parameters
of the SIM-bodies used in all the key theorems for the optimality of SJA. Equation
(19) is equivalent to saying that µr = λ1 + · · · + λr. Taking the µ(m)

r values into
account (see (13)) the λ(m)

r ’s for up to m = 6 items are, for m ≤ 4,

(29) λ1 = 1, λ2 = 1 +
√

2, λ3 ≈ 3.6830, λ4 ≈ 4.9000,

and for m = 5, 6 the only modifications are

(30) λ
(5)
4 ≈ 4.9894, λ

(5)
5 = 6, λ

(6)
5 ≈ 6.3613, λ

(6)
6 = 7.

The nonincreasing differences property of the SJA payments makes these param-
eters monotonic:

Lemma 6.3. The λ
(m)
r parameters are nondecreasing and upper-bounded by

m+ 1, i.e.,
λ

(m)
r−1 ≤ λ(m)

r ≤ m+ 1

for all r = 2, . . . ,m.

Proof. Using the transformations (13) and (19) we have

pr − pr−1 ≤ pr−1 − pr−2 =⇒ µr−1 − µr−2 ≤ µr − µr−1 =⇒ λr−1 ≤ λr

and
pr−1 ≤ pr =⇒ µr − µr−1 ≤ m+ 1 =⇒ λr ≤ m+ 1,

which concludes the proof since the SJA payments are nondecreasing with nonincreas-
ing differences (Lemma 6.2).

An algebraic manipulation of (16), using the nonincreasing differences property
of the SJA payments, can give us the following characterization:

Lemma 6.4. For any subset of items J ⊆ [m],

U
(m)
J =

x ∈ Im
∣∣∣∣∣∣
∧
L⊆J

∑
j∈L

xj ≥ p(m)
|J| − p

(m)
|J|−|L|

∧
L⊆[m]\J

∑
j∈L

xj ≤ p(m)
|J|+|L| − p

(m)
|J|

 .
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Proof. Fix some positive integer m, J ⊆ [m] and an arbitrary x ∈ Im. We need
to show that x satisfies the constraints in the description of set U (m)

J at the statement
of Lemma 6.4 if and only if it satisfies the constraints in (16). To be more precise,
and after moving all xj ’s in the constraints of (16) at the left side of the inequalities
and deleting the ones that cancel out, we need to show that

(31)
∑
j∈J\L

xj −
∑
j∈L\J

xj ≥ p|J| − p|L| for all L ⊆ [m]

if and only if

(32)
∑
j∈L1

xj ≥ p|J| − p|J|−|L1| for all L1 ⊆ J

and

(33)
∑
j∈L2

xj ≤ p|J|+|L2| − p|J| for all L2 ⊆ J̄ ,

where for simplicity we drop the superscript (m) from the prices and denote J̄ =
[m] \ J .

Indeed, first assume that x satisfies (31) and pick any L1 ⊆ J , L2 ⊆ J̄ . Then,
since J \ (J \ L1) = L1 and (J \ L1) \ J = ∅, by using L← J \ L1 in (31) we get∑

j∈L1

xj ≥ p|J| − p|J\L1| = p|J| − p|J|−|L1|,

which proves that x satisfies (32). In a similar way, since J \ (J ∪ L2) = ∅ and
(J ∪ L2) \ J = L2, if we use L← J ∪ L2 in (31) we get

−
∑
j∈L2

xj ≥ p|J| − p|J∪L2| = p|J| − p|J|+|L2|,

which is the same as (33).
For the opposite direction, assume now that x satisfies (32) and (33), and pick

any L ⊆ [m]. Since J \ L ⊆ J and L \ J ⊆ J̄ , if we use L1 ← J \ L and L2 ← L \ J
in (32) and (33), respectively, we get∑

j∈J\L
xj ≥ p|J| − p|J|−|J\L|,∑

j∈L\J
xj ≤ p|J|+|L\J| − p|J|.

By subtracting these inequalities and taking into consideration that |J | − |J \ L| =
|J ∩ L| and |J |+ |L \ J | = |J ∪ L| we have∑

j∈J\L
xj −

∑
j∈L\J

xj ≥ 2p|J| − p|J∩L| − p|J∪L|.

So, in order to show that (31) holds and conclude the proof of the lemma, it is enough
to show that p|J| − p|J∩L| − p|J∪L| ≥ −p|L|, or equivalently that

p|J∪L| − p|J| ≤ p|L| − p|J∩L|.
But since |J ∪ L|−|J | = |L|−|J ∩ L| (they are both equal to |L \ J |) and |J ∪ L| ≥ |L|,
the above inequality indeed holds due to the nonincreasing differences property of the
SJA payments (Lemma 6.2).
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Notice here that, due to symmetry, every slice U (m)
J |−J:t with |J | = r ≤ m is

isomorphic to U
(m)
[r] |[r+1...m]:t and so, from the characterization in Lemma 6.4, this

slice is invariant with respect to the specific value of the ((m−r)-dimensional) vector
t. In particular, if it’s nonempty, then

(34) U
(m)
J

∣∣∣
−J:t

= U
(m)
J

∣∣∣
−J:0m−|J|

.

The following lemma essentially gives an alternative definition of SJA, in terms of
the deficiencies of its allocation components U (m)

J . In particular, it requires every
|J |-dimensional slice of any subdomain U

(m)
J to have zero deficiency:

Lemma 6.5. Every slice U (m)
J |−J:t of SJA has zero k-deficiency, where k = 1

m+1 .

Proof sketch. Fix some dimension m and let k = 1/(m+ 1). By the definition of
SJA (10), the domain U∅ where at least one item is sold must have volume m/(m+1):
the probability of selling at least an item is mk = m/(m + 1) which corresponds to
the volume of this domain because the valuations’ space is the unit cube Im. Every
projection (U∅){j} of this body towards any coordinate j ∈ [m] has volume 1: it is
the (m − 1)-dimensional side of the cube; just set the valuation of item j to xj = 1
and trivially notice that, no matter what the remaining valuations x−j ∈ Im−1 are,
at least one item is being sold by SJA, namely item j, since xj = 1 ≥ p1. Bringing
the above together, this means that the k-deficiency of U∅ is m/(m+1)−k ·m ·1 = 0.

This valuations subdomain U∅ where at least one item is sold can be decomposed
in its various components UJ , where ∅ 6= J ⊆ [m]. Its volume is just the sum of the
volumes of these components. Also, its projections (i.e., the sides of the unit cube
Im) can be covered by taking the projection of any such component UJ with respect
to its “active” coordinates in J . This tells us that the deficiency of the entire body
U∅ is essentially reduced to the sum of the deficiencies of its subdomains. But this
body has zero k-deficiency, so all its components must also have zero deficiencies (by
using an inductive argument).

A complete, formal proof of this characterization can be found in Appendix A.

Now we are ready to prove Lemma 4.7, which makes rigorous the correspondence
between the various components U (m)

J of the allocation space of SJA and SIM-bodies.
It is the motivation behind introducing SIM-bodies in the first place. Essentially, the
entire allocation space of SJA is made up by slices of SIM-bodies:

Lemma 6.6. Every nonempty slice U
(m)
J |−J:t is isomorphic to the SIM-body k ·

Λ(λ(m)
1 , . . . , λ

(m)
|J| ), where k = 1

m+1 .

Proof. Let |J | = r. Then, due to symmetry, the slice UJ |−J:t is isomorphic to
U[r]|[r+1...m]:t. An r-dimensional vector y belongs to this slice if and only if (y, t) ∈
U[r], which by Lemma 6.4 means that y ∈ Ir and∧

L⊆[r]

∑
j∈L

yj ≥ pr − pr−|L|.

By (13) this can be written as∧
L⊆[r]

∑
j∈L

yj ≥ |L| − (µr − µr−|L|)k.
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So this slice is an upwards closed body within the r-dimensional unit hypercube Ir,
and if we apply the isomorphism y 7→ 1r − y it is flipped around and mapped to the
downwards closed body around the origin 0r defined by y ∈ Ir and

∧
L⊆[r]

∑
j∈L yj ≤

(µr − µr−|L|)k. By taking into consideration (19) this becomes

(35)
∧
L⊆[r]

∑
j∈L

yj ≤ λr−|L|+1k + · · ·+ λrk.

It is easy to see that the extra condition y ∈ Ir can be replaced by the weaker one
y ∈ Rr+, since the upper bounds yj ≤ 1 are already captured by (35): for L = {j} it
gives

(36) yj ≤ λrk =
λr

m+ 1
≤ 1,

the last inequality holding from Lemma 6.2. So, we end up with exactly the definition
of Λ(kλ1, . . . , kλr). We must note here that this SIM-body is well defined, since the
λr’s are nondecreasing (Lemma 6.2).

7. Proof of optimality. In this section we conclude the proof of our main result
about the optimality of SJA (Theorem 4.2). We do that by showing Theorems 4.8
and 4.9.

In addition to the SIM-bodies Λ(λ1, . . . , λr) being essentially the building blocks
of the allocation space of the SJA, the particular choice of the λr parameters makes
them satisfy another property: they have zero 1-deficiency:

Lemma 7.1. For any dimension m, if a subdomain U (m)
J of SJA is nonempty then

the corresponding SIM-body Λ(λ(m)
1 , . . . , λ

(m)
|J| ) has zero 1-deficiency.

Proof. Fix some m and let k = 1/(m + 1). For any nonempty subdomain UJ ,
the slice UJ |−J:0m−|J| is nonempty (by downwards closure), so by Lemma 6.5 it has
zero k-deficiency. But from Lemma 4.7 it is also isomorphic to the SIM-body k ·
Λ(λ(m)

1 , . . . , λ
(m)
r ), thus δk(k · Λ(λ(m)

1 , . . . , λ
(m)
r )) = 0. By property 5 of Lemma 6.1

this means that indeed δ1(Λ(λ(m)
1 , . . . , λ

(m)
r )) = 0.

Now we are ready to prove Theorem 4.8. It is essentially the only ingredient of this
paper whose proof does not work for more than six items (condition (39), specifically).
In a way it demonstrates the maximality of the deficiency of the particular critical
SIM-bodies Λ(λ1, . . . , λr), in the sense that they cannot contain subsets that have
greater deficiency than themselves.

Theorem 7.2. For up to m ≤ 6, no SIM-body Λ(λ(m)
1 , . . . , λ

(m)
r ) corresponding

to a nonempty subdomain U
(m)
[r] contains positive 1-deficiency sub-bodies.

Proof. We will prove the stronger statement that for all r ≤ m ≤ 6 no SIM-body
Λ(λ(m)

1 , . . . , λ
(m)
r ) contains a sub-body with nonnegative 1-deficiency greater than its

own, i.e.,

∅ 6= A ⊆ Λ(λ(m)
1 , . . . , λ(m)

r ) ∧ δ1(A) ≥ 0 =⇒ δ1(A) ≤ δ1(Λ(λ(m)
1 , . . . , λ(m)

r )).
(37)

This is enough to establish the theorem, because of Lemma 7.1. We will use induction
on r. At the basis, whenever r = 1, for any number of items m the SIM-body is just
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the line segment Λ(λ(m)
1 ) = [0, λ(m)

1 ] and it is easy to see that every (nonempty) subset
of it will have smaller volume but the same projection, resulting in smaller deficiency.

Moving on to the inductive step, for simplicity denote Λ = Λ(λ(m)
1 , . . . , λ

(m)
r ) and

let A ⊆ Λ be a maximum volume sub-body of maximum nonnegative deficiency within
Λ. Without loss (by Lemma 5.5) A can be assumed to be symmetric and downwards
closed. By Lemma 5.10, this tells us that every slice of it must be p-closed (since A
is within Λ which is a SIM-body and thus p-closed). We will prove that A = Λ which
is enough to establish (37).

We start by showing that the outmost (r − 1)-dimensional slice of A, namely
A|{1}:w(Λ), cannot be empty. Notice that, by property 1 of Lemma 6.1, w(Λ) = λ

(m)
r .

The choice of coordinate 1 here is arbitrary; due to symmetry any slice A|{j}:w(Λ)
with j ∈ [r] would work in exactly the same way. If this slice was empty, we could
add in this free space of A (an ε-neighborhood of) the (r− 1)-dimensional SIM-body
B defined by

(38) B = Λ(λ(m′)
1 , . . . , λ

(m′)
r−1 ), where m′ =

{
r − 1 if U (m)

[r−1] = ∅,
m otherwise.

Observe here that by taking into consideration the values of the λ(m)
j parameters of

the SJA mechanism (see (29) and (30)) we can see that the following properties are
satisfied for all r ≤ m ≤ 6:

(39) λ
(m′)
j ≤ λ(m)

j and λ
(m′)
j ≤ j + 1 for all j ∈ [r − 1]

and

(40) λ
(m)
j ≤ j + 1 for all j ∈ [r − 2].

In particular, for m = r = 6, notice that although λ
(m)
r−1 = λ

(6)
5 ≈ 6.3613 > 6 =

(r − 1) + 1 (and that is why Property (40) above cannot be extended to j = r − 1),
it’s still the case6 that λ(m′)

r−1 = λ
(r−1)
r−1 = λ

(5)
5 = 6 = (r − 1) + 1 and so (39) holds. So,

it must be that
B ⊆ Λ(λ(m)

1 , . . . , λ
(m)
r−1) = Λ|{1}:λ(m)

r
,

the first inclusion being a result of (39), and the last equality being from property 3
of Lemma 6.1. This means that B indeed fits in the exterior space Λ at distance
x1 = λ

(m)
r , which is exactly where we put it.

We will now show that this addition caused no decrease at the 1-deficiency of A,
which would contradict the maximality of the volume of A. Equivalently, we need to
show that the increase we caused in the volume by extending A was at least equal
to the increase in the total volume of its projections. First, we show that no new
projections were created with respect to coordinate 1, i.e., B was already included in
A[r]\{1} = A|{1}:0. Indeed, it is

B = D(H(P(λ(m′)
1 , . . . , λ

(m′)
r−1 ))) ⊆ D(H(P(2, . . . , r))) ⊆ A|{1}:0 .

The first equality comes from property 2 of the SIM-bodies in Lemma 6.1, the second
inclusion is from (39), and the last inclusion is by Lemma 5.9 and the p-closure of

6Due to the fact that U(6)
[5] = ∅ (see (26)) and the definition of m′ in (38).
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A|{1}:0. What is left to show is that the sum of the new projections created with
respect to the remaining coordinates [2 . . . r] was at most equal to the increase in
the volume. But this comes directly from the fact that the slice B we added has
zero 1-deficiency: it is a SIM-body corresponding to a subdomain U

(m′)
[r−1] 6= ∅ (see

Lemma 7.1).
So, in the following we can indeed assume that body A ⊆ Λ is of maximum width

w(A) = λ
(m)
r . Then we will show that, at x1 = w(A), A must in fact include the entire

corresponding slice of Λ. This slice is Λ|{1}:λm
r

= Λ(λ(m)
1 , . . . , λ

(m)
r−1), so that would

mean that the extreme point (λ(m)
1 , . . . , λ

(m)
r−1, λ

(m)
r ) is in A, and thus by p-closure

(Lemma 5.10) the body D(H(P(λ(m)
1 , . . . , λ

(m)
r ))) must be included within A. But

from property 2 of Lemma 6.1 this body is exactly the entire external body Λ, which
concludes the proof. So let’s show that indeed A|{1}:λm

r
= Λ|{1}:λm

r
. It is enough

to show that removing this slice of A and replacing it with the full slice of Λ would
result in a nondecrease of the 1-deficiency: that would contradict the maximality of
the volume of A.

First, notice that A|{1}:λm
r

is within Λ|{1}:λm
r

, where Λ|{1}:λm
r

is the SIM-body

Λ(λ(m
1 , . . . , λ

(m)
r−1) and also slice A|{1}:λm

r
must have nonnegative deficiency (by

Lemma 5.6). So, by the induction hypothesis it must be that the full slice Λ|{1}:λm
r

has at least the deficiency of the slice A|1:λm
r

it replaces. That means that, taking
into consideration only projections in the directions [2 . . . r], the overall change in
the deficiency is indeed nonnegative. So, to conclude the proof it is enough to show
that no new projections with respect to coordinate 1 are created by this replacement,
i.e., that Λ(λ(m

1 , . . . , λ
(m)
r−1) was already included in A[r]\{1} = A|{1}:0. Indeed,

Λ(λ(m
1 , . . . , λ

(m)
r−1) = D(H(P(λ(m)

1 , . . . , λ
(m)
r−1)))

⊆ D(H(P(λ(m)
1 , . . . , λ

(m)
r−2, λ

(m)
r )))

⊆ D(H(P(2, . . . , r − 1, w(A)))),

by (40) and the fact that w(A) = λ
(m)
r , which concludes the proof since slice A|{1}:0 is

p-closed and (2, . . . , r− 1, w(A)) belongs to it, because (1, 2, . . . , r− 1, w(A)) belongs
to A by Lemma 5.9.

We now present our main tool to prove that SJA is optimal. It utilizes the fact
that the allocation space of SJA has no positive deficiency subsets in a combinatorial
way.

Theorem 7.3. If for every nonempty subdomain U
(m)
J of SJA the corresponding

SIM-body Λ(λ(m)
1 , . . . , λ

(m)
|J| ) contains no sub-bodies of positive 1-deficiency, then SJA

is optimal.

Proof. The proof of Theorem 4.9 is done via a combinatorial detour to a dis-
crete version of the problem, which is interesting in its own right and highlights
the connection of the dual program with bipartite matchings. The nonpositive de-
ficiencies property allows us to utilize Hall’s marriage condition. Let us denote by
Ij ≡ {(x−j , 1) | x ∈ Im } the side on the boundary of the Im cube which is perpen-
dicular to axis j, for j ∈ [m].

We start by restricting the search for an appropriate feasible dual solution to
those functions zj(x) that have the following form:

Fix some integer N which is a multiple of m+1 and let ε′ = 1/N . We
discretize the space by taking a fine grid partition of the hypercube
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Fig. 4. Proper colorings of the allocation space U∅ of the SJA mechanism for m = 2 items and
different discretization factors N = 18 (left) and N = 105 (right). Blue corresponds to the direction
of the horizontal axis and red to the vertical axis. The zero region U∅ where no item is allocated
(white region in Figure 2) is colored in yellow. Notice how the entire region U{1} is colored blue
and the entire U{2} red. The critical and technically involved part of the coloring for two items is
the one of region U{1,2} where both items are allocated. Interpreting this in the realm of the dual
program and the language of the proof of Theorem 4.9, blue is color 1 and corresponds to the points
where function z1 increases with “full” derivative m+1 = 3 (with respect to the coordinate x1) while
z2 remains constant (with respect to coordinate x2). Red is color 2 and denotes the reverse situation
where z2 increases with derivative 3 (with respect to coordinate x2) and z1 remains constant (with
respect to variable x1). Yellow is color 0 where both z1 and z2 are constant.

Im into small hypercubes of side ε′ and we require that inside each
small hypercube the derivatives ∂zj(x)/∂xj are constant and take
either value 0 or value m+ 1.

We must point out here that this discretization is used only in the analysis and it is
not part of the optimal selling mechanism which is given just by its prices p(m)

r .
With the discretization, the combinatorial nature of the dual solutions emerges:

a dual solution is essentially a coloring of all the ε′-hypercubes of Im into col-
ors 0, 1, . . . ,m. The interpretation of the coloring is the following: the derivative
∂zj(x)/∂xj has a positive value m + 1 if and only if the corresponding hypercube
(at which x belongs to) has color j, otherwise it is zero (i.e., zj(x) is constant with
respect to the direction of the j axis); color 0 is used exactly for the points where all
zj functions are constant. A feasible dual solution corresponds to a coloring in which
every line of hypercubes parallel to some axis, say axis j, contains at least N/(m+ 1)
hypercubes of color j. To see this, notice that function zj(x) must increase in a frac-
tion of (at least) 1/(m + 1) of those small hypercubes (because it starts at value 0
and has to increase to a value of at least 1; see the dual constraints in Remark 3.1).
Figure 4 illustrates such a coloring for m = 2 items.

To formalize this let us discretize the unit cube Im in ε′-hypercubes [(i1 − 1) ·
ε′, i1 · ε′]× · · · × [(im − 1) · ε′, im · ε′], where ij ∈ [N ] for all j ∈ [m] (see Figure 5). To
keep notation simple, we will sometimes identify hypercubes by their center points,
i.e., refer to the ε′-hypercube x instead of the cube [x1− ε′/2, x1 + ε′/2]× · · ·× [xm−
ε′/2, xm + ε′/2]. In that way, Im is essentially an m-dimensional lattice of points

((i1 − 1) · ε′ + ε′/2, . . . , (im − 1) · ε′ + ε′/2) , ij ∈ [N ], j ∈ [m].

Based on this, for any S ⊆ Im we will denote by ∆(S) the set of lattice points in S.
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g(m)ε′

k

k

g(m)ε′kk

x2

x1

U{1,2}

U∅

U{1}

U{2}

U∅
⋆

B{1,2},1 B⋆
{1,2},1

B{1},1 B⋆
{1},1

B{1,2},2

B⋆
{1,2},2

B{2},2

B⋆
{2},2

Fig. 5. The discretization of the allocation space and the structure of graph G used in the
proof of Theorem 4.9, for m = 2 items. The space U∅ where SJA sells at least one item (colored
gray) does not properly align with the ε′-discretization grid so we have to take a cover U∗∅ (outlined
with the thick line, green in the color version of this paper). The boundaries Bj ∪ B∗j have width
k + g(m)ε′. The one on the right (perpendicular to the vertical axis) consists of ε′-cubes holding
color 1 (blue at the color version of the paper) and the one at the top color 2 (red). Edges run from
every internal ε′-cube, vertically towards the red exterior and horizontally towards the blue exterior.
Notice, however, how the cube within the allocation subspace U{1} has only horizontal (blue) edges
running out of it, since it is not allowed to use color 2 (red). That is due to the fact that item 2 is
not sold within U{1}.

Next, consider the subdomain UJ where SJA sells exactly the items that are in
J ⊆ [m]. For any one of these “active” coordinates j ∈ J take UJ ’s boundary at side
Ij of the unit cube and “inflate” it to have a width of k = 1/(m + 1). Formally, for
all J ⊆ [m] and j ∈ J define

BJ,j ≡ {(t,x−j) | x ∈ UJ ∧ t ∈ [1, 1 + k]} .

BJ,j is isomorphic to (UJ)[m]\{j} × [0, k]. For any subset of items J ⊆ [m] denote
BJ =

⋃
j∈J BJ,j and B =

⋃
J⊆[m]BJ the entire external layer on all sides.
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Notice that U∅ cannot be perfectly discretized: the small hypercubes do not fit
exactly inside U∅ because its boundaries are not rectilinear.7 To fix this, we will take
a cover U

∗
∅ of U∅ which can be partitioned into ε′-hypercubes. More precisely, define

U
∗
∅ to be the union of all ε′-hypercubes of Im that intersect U∅. Finally, let’s also

extend the boundary region B by adding on top of every boundary component BJ,j
a thin strip

B∗J,j = {(t,x−j) | x ∈ UJ ∧ t ∈ [1 + k, 1 + k + g(m) · ε′]},
where g(m) = d√m + 1e, and extend notation in the obvious way: B∗J =

⋃
j∈J B

∗
J,j

and B∗ =
⋃
j B
∗
j .

Now it’s time to fully reveal the combinatorial structure of our construction by
defining a bipartite graph G(∆(U

∗
∅) ∪ ∆(B ∪ B∗), E), which has as nodes the ε′-

hypercubes of the cover U
∗
∅ and the boundary B ∪ B∗ (see Figure 5). Intuitively,

the edges E will connect all lattice points of a subdomain UJ with the nodes of its
corresponding boundary BJ∪B∗J that agree on m−1 coordinates; each UJ is projected
onto the sides Ij of the cube that correspond to active items j ∈ J . To be precise, for
any x ∈ ∆(U

∗
∅) and y ∈ ∆(B ∪B∗),

(x,y) ∈ E ⇐⇒ x−j = y−j
for some j ∈ J , J ⊆ [m], with ε′-hypercube x intersecting UJ .

Another way to view this is that edges start from a node on a side j of the external
layer B ∪B∗, are perpendicular to that side of the unit cube (i.e., parallel to axis j)
and run towards its interior body U

∗
∅, excluding the areas where j is not sold.

By this construction, a bipartite matching of graph G that matches completely
the initial boundary ∆(B) corresponds to a proper coloring of the ε′-hypercubes of Im:
an internal cube matched to a node in side Bj is assigned color j and all unmatched
cubes are assigned color 0; every line parallel to an axis j ∈ [m] contains at least
k/ε′ = N/(m+ 1) distinct hypercubes in the boundary Bj .

We will use standard graph-theoretic notation and for any set of nodes X, N(X)
will denote its set of neighbors, i.e., N(X) = {y | (x, y) ∈ E for some x ∈ X }. Hall’s
condition tells us that in any bipartite graph G = (X ∪Y,E) there is a matching that
completely matches X if and only if

(Hall’s condition) |S| ≤ |N(S)| for all S ⊆ X.
What does the nonpositive 1-deficiency property of all SIM-bodies Λ(λ1, . . . , λr),

r ≤ m, tell us about graph G? Remember (Lemma 4.7) that these SIM-bodies
correspond to slices UJ |−J:t of the allocation space, so (using also property 5 of
Lemma 6.1) for any J ⊆ [m], t ∈ Rm−|J|+ and S ⊆ UJ |−J:t:

(41) |S| ≤ k
∑
j∈J
|Sj | ,

where Sj ≡ S[m]\{j}. Using the fact that every such slice UJ |−J:t has zero k-deficiency
(Lemma 6.5), if we take complements S = UJ |−J:t \ S and Sj = (UJ |−J:t)[m]\{j} \ Sj
the above relation gives

7The solution of partitioning the unit hypercube into small simplices instead of small hypercubes
does not work either; although simplices have more appropriate boundaries, we cannot guarantee
that there exists an ε′ for which all the boundaries of U∅ coincide with some boundaries of the small
simplices.
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(42) k
∑
j∈J

∣∣Sj∣∣ ≤ ∣∣S∣∣ .
First we will show that there is a matching on the bipartite graph G we de-

fined, which completely matches all nodes in ∆(U∅). By (41) and the fact that every
(UJ)[m]\{j}×[0, k] is isomorphic to BJ,j , Hall’s theorem tells us that we can completely
match ∆(UJ |−J:t) into ∆(BJ). By the way we have constructed the edge set E, this
directly means that there is a complete matching of ∆(U∅) into ∆(B). So, to extend
this into a complete matching of the cover ∆(U

∗
∅), using this time additional points

in the extended thin-stripe boundary B∗ at the other side of the bipartite graph G, it
is enough to show that the extra lattice points in U

∗
∅ \U∅ of any line parallel to some

axis j are at most g(m), the number of neighbors in B∗. Indeed, any point in U
∗
∅

cannot have distance more than
√
mε′ ≤ g(m)ε′ from a point in U∅, because every

ε′-hypercube of U
∗
∅ intersects with U∅ and the diameter of such a hypercube (with

respect to the Euclidean metric) is exactly
√
mε′. We will now show that there is

also a complete matching of ∆(B) into ∆(U
∗
∅). By the way we constructed the edge

set, it is enough to show that every slice ∆(BJ |−J:t) of the boundary can be com-
pletely matched into the corresponding internal slice ∆(U

∗
∅|−J:t). Fix some nonempty

J ⊆ [m] and t ∈ Rm−|J|+ . By Hall’s theorem it is enough to prove that, for any family
of sets of {Tj}j∈J of lattice points Tj ⊆ ∆(BJ,j |−J:t),

∑
j∈J |Tj | ≤ |

⋃
j∈J N(Tj)|.

We will prove the stronger
∑
j∈J |Tj | ≤ |

⋃
j∈J N(Tj) ∩ U∅|−J:t|; that is, we will just

count neighbors in the initial set U∅ and not the cover U
∗
∅. The continuous analogue

of this is to take Tj ’s be subsets of BJ,j |−J:t and consider the natural extension of the
neighbor function N when we now have a infinite graph of edges{

(x,y)
∣∣ x ∈ UJ |−J:t ∧ y ∈ BJ |−J:t ∧ x−j = y−j for some j ∈ J

}
.

Let S = UJ |−J:t \
⋃
j∈J N(Tj) be the set of points not being neighbors of any node

in
⋃
j∈J Tj of the boundary. Then by (42) it is enough to show that

∑
j∈J |Tj | ≤

k
∑
j∈J

∣∣Sj∣∣, where Sj = S[m]\{j}. Every point in the boundary BJ,j |−J:t that has
neighbors in

⋃
j∈J N(Tj) projects (with respect to j) inside Sj . But, for any point y in

Tj the only other points that can have the same projection with respect to coordinate
j are all points of the line segment of BJ,j |−J:t which is parallel to the j axis and
passes through y, and this segment has length k.

Combining the existence of the above two matchings, a straightforward use of the
classic Cantor–Bernstein theorem from set theory ensures the existence of a matching
in graph G that completely matches both ∆(U

∗
∅) and ∆(B). But, as we discussed

before, this means that U
∗
∅ is properly colorable and thus this coloring induces a fea-

sible dual solution. Let’s denote this solution by zj(x), j ∈ [m] and also let u(x) be
the primal solution given by SJA, i.e., u is the utility function of the SJA mechanism.
To prove the optimality of u, we will take advantage of the approximate comple-
mentarity: we claim that this primal-dual pair of solutions satisfies the approximate
complementarity conditions in Lemma 3.3 for ε = g(m)m(m+ 1) · ε′:

u(x) ·

m+ 1−
∑
j∈[m]

∂zj(x)
∂xj

 ≤ ε,(43)

−u(0,x−j) · zj(0,x−j) ≤ ε,(44)



156 YIANNIS GIANNAKOPOULOS AND ELIAS KOUTSOUPIAS

u(1,x−j) · (zj(1,x−j)− 1) ≤ ε,(45)

zj(x) ·
(

1− ∂u(x)
∂xj

)
≤ ε.(46)

If that is true, then the proof of Theorem 4.9 is complete, since by the approximate
complementarity Lemma 3.3 the primal and dual objectives differ by at most (3m+
1)ε = (3m+1)g(m)m(m+1)ε′, and if we take the limit of this as ε′ → 0, these values
must be equal. So let’s prove that (43)–(46) indeed hold.

Condition (44) is satisfied trivially, since both the primal and the dual variables
are nonnegative. Regarding (45), for any line parallel to some axis j the length of
its segment intersecting the boundary B ∪ B∗ (which is the one contributing the
critical colors j to that direction) is k + g(m)ε′. So, given that the derivative of
zj(x) in sections colored with j is m + 1 we can upper-bound the value of zj(1,xj)
by (k + g(m)ε′)(m + 1) = 1 + g(m)(m + 1)ε′. This means that zj(1,xj) − 1 ≤
g(m)(m + 1)ε′ and, given the fact that the utility function has the property that
u(x) ≤ m (because its derivatives are at most 1 at every direction), we finally get the
desired u(1,x−j) · (zj(1,x−j)− 1) ≤ g(m)m(m+ 1)ε′ = ε.

For condition (43), assume that u(x) > 0 (otherwise it is satisfied). That means
that SJA sells at least one item, thus x ∈ U∅ ⊆ U

∗
∅; but U

∗
∅ is completely matched,

thus all points of U
∗
∅ are colored with some color in [m] (not with color 0); this is

equivalent to the fact that some derivative of the zj functions is m+ 1 and all others
are zero, meaning that the corresponding slack variable m + 1 −∑j∈[m] ∂zj(x)/∂xj
is zero.

Finally, for condition (46), fix some direction j ∈ [m] and assume that ∂u(x)/∂xj
6= 1 (otherwise the condition is satisfied). SJA is deterministic, so it must be that
∂u(x)/∂xj = 0, i.e., item j is not allocated. That means that x belongs to a subdo-
main UJ with j /∈ J , and the same is true for all points before it parallel to axis j (that
is, all points (t,x−j) with t ∈ [0, xj ]). Thus, by the way that the edge set E of the
graph G was defined, x’s ε′-hypercube, as well as all hypercubes before it and parallel
to axis j, cannot have been colored with color j unless they happen to intersect with
a neighboring subdomain UJ∗ with j ∈ J∗. But it is a simple geometric argument
to see that point (xj − ε′m,x−j) is at distance at least ε′m√

|J∗|
≥ ε′m√

m
=
√
mε′ below

the boundary
∑
j∈J∗ xj = p|J∗| of UJ∗ (since we already know that x is below it),

which is exactly the diameter of the ε-hypercubes. So, at most m such hypercubes
below x’s could intersect with UJ∗ , and thus be colored with color j, meaning that
zj(x) cannot have increased more than (m+1)ε′ · (m+1) from zero. This proves that
indeed zj(x)(1− ∂u(x)/∂xj) = zj(x) ≤ (m+ 1)2ε′ ≤ ε.

8. Conclusion. Our main goal in this paper was to design revenue maximizing
auctions when many heterogeneous items are to be sold to a buyer whose values are
independently, uniformly distributed over the unit interval [0, 1]. This is the “canon-
ical” multidimensional monopolist problem in economics that still remains unsolved,
four decades after the seminal work of Myerson [27] for the special case of a single
item. We design and analyze a natural mechanism (SJA), and prove its optimality
for up to six items. Interestingly, it turns out that the optimal mechanism is deter-
ministic. Prior to our work only solutions for two or three items were known [24, 30],
and they were achieved mostly through a direct, case-specific optimization approach
rather than a clear, unifying viewpoint that could help us towards a more fundamental
understanding of multi-item auction settings.
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The cornerstone of our approach is the use of duality and complementarity. To-
wards this end, we present a much more general weak duality theory framework that
can be formulated for many buyers and arbitrary joint distributions which we hope
will prove useful in future attacks on generalizations of our problem: After the con-
ference version of this paper, our duality framework has already successfully been
applied to deal with rather general classes of distributions [15, 10] and in the domain
of approximately optimal auctions as well [12]. Our solution illuminates the rich ge-
ometric ideas underlying the problem, and in the process we formally develop some
novel geometric machinery that might be of independent interest.

The most obvious direction for future work is validating the conjecture that SJA
is indeed optimal for any number of items and not just up to 6. Another fundamental
open problem is that of finding exact optimal solutions, like the ones provided in
this paper, for more than one bidder: for example, the seemingly simple case of two
items and two buyers with i.i.d. uniform valuations over [0, 1] is still wide open. Is
determinism still powerful enough for revenue maximization when multiple bidders
are involved? And if not, how well can deterministic auctions that generalize SJA
approximate the optimal revenue?

Appendix A. Full proof of Lemma 6.5. Recall the definition of body
V (p(m)

1 , . . . , p
(m)
r ) in (11). By the definition of SJA in (10), the volume of this body

must be equal to rk. Then, as we discussed in the proof sketch of Lemma 6.5 in
subsection 6.2, this translates to its deficiency being zero:

(47) δ 1
m+1

(V (p(m)
1 , . . . , p(m)

r )) = 0 for all r ≤ m.

Before giving the formal proof of Lemma 6.5, we will need the following lemma that
shows how the deficiency of any such subdomain of the valuation space is the sum of
the deficiencies of its “critical” subslices of lower dimensions:

Lemma A.1. For any subset of items J ⊆ [m], the k-deficiency of any slice of
the subdomain where at least one of the items in J is sold, when all other items’ bids
are fixed to zero, is the sum of the k-deficiencies of all its subslices (U (m)

L |−J:0)|J\L:t,
where ∅ 6= L ⊆ J and k = 1

m+1 . Formally,

δk(V (p(m)
1 , . . . , p

(m)
|J| )) =

∑
∅6=L⊆J

∫
I|J|−|L|

δk

((
U

(m)
L

∣∣∣
−J:0

)∣∣∣∣
J\L:t

)
dt.

Proof. Fix some m. For the sake of clarity we will prove the proposition for J
having full dimension J = m. All the arguments easily carry on to the more general
case where J ⊆ [m] if one takes all valuations of items not in J to be 0, i.e., “slic-
ing” ( · )|−J:0, since they are valid for any selling mechanism with nonincreasing
price differences and SJA specifically; essentially, the case of |J | = m′ ≤ m directly
translates to the case of an m′-dimensional mechanism.

So, it is enough to show that

|V | =
∑

∅6=L⊆[m]

∫
Im−|L|

∣∣UL|−L:t

∣∣ dt,(48)

∣∣V[m]\{j}
∣∣ =

∑
∅6=L⊆[m]
j∈L

∫
Im−|L|

∣∣∣(UL|−L:t

)
[m]\{j}

∣∣∣ dt for all j ∈ [m],(49)
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where for simplicity we have denoted the space V (p1, . . . , pm) where mechanism allo-
cates at least one item with V . Equation (48) is a result of the fact that V can be
decomposed as V =

∑
∅6=L⊆[m] UL and every allocation subspace UL is isomorphic to

the disjoint union of all its slices UL|−L:t. In a similar way, to prove that (49) holds, it
is enough to show that, for some fixed j ∈ [m], the projection V[m]\{j} can be covered
by the union of all the projections of the subspaces UL with respect to coordinate j
and that all these projections (UL)[m]\{j} are disjoint almost everywhere, i.e., they
can only intersect in a set of measure zero.

For the former, let x−j ∈ V[m]\{j}. Then (x−j , 1) ∈ V (by only increasing the
components of a valuation profile, items that were sold to the buyer are still going to
be sold). So, there is a nonempty set of items L ⊆ [m] such that (x−j , 1) ∈ UL and
j ∈ L (item j is sold since xj = 1 ≥ p1), meaning that indeed x−j ∈ (UL)[m]\{j} with
j ∈ L. For the latter, consider distinct sets L,L′ ⊆ [m] with j belonging to both L
and L′, and let a valuation profile x ∈ UL ∩ UL′ . Then, by the characterization in
Lemma 6.4 it must be that∑

l∈L′\L
xl ≥ p|L′| − p|L′|−|L′\L| and

∑
l∈L′\L

xl ≤ p|L|+|L′\L| − p|L|,

the first inequality being from the fact that x ∈ UL′ and the second from x ∈ UL,
taking into consideration that L′ \ L ⊆ L′ and L′ \ L 6⊆ L. As a result, the sum∑
l∈L′\L xl can range at most over only a single value, namely p|L′| − p|L′|−|L′\L| =

p|L|+|L′\L| − p|L| (and only if these two values are of course equal), otherwise by
merging these two inequalities together we would have gotten that

p|L′| − p|L′|−|L′\L| < p|L|+|L′\L| − p|L|,
which contradicts the nonincreasing payment differences property, since both differ-
ences are between payments that differ at exactly |L′ \ L| “steps” but |L|+ |L′ \ L| ≥
|L′|.

Lemma A.2. Every slice U (m)
J |−J:t of SJA has zero k-deficiency, where k = 1

m+1 .

Proof. Fix some m and let k = 1/(m + 1). We use induction on the cardinality
of J . At the base of the induction |J | = 1, and due to symmetry it is enough to
prove the proposition for slices of the form U{1}|[2...m]:t. By (34) this is equal to
the slice U{1}|[2...m]:0m−1 , which is the single-dimensional interval [p1, 1], thus having
k-deficiency 1− p1 − 1

m+1 · 1 = m
m+1 − p1 = 0.

For the inductive step, fix some r ≤ m and assume the proposition holds for all
J ⊆ [m] with |J | ≤ r − 1. We will show that it is true also for |J | = r. Again, due
to symmetry, it is enough to prove that the k-deficiency of slice U[r]|[r+1...m]:0m−r

is
zero (taking into consideration (34)). By Lemma A.1 we deduce that the subdomain
where at least one of items [r] is sold, given that the remaining [r + 1 . . .m] bids are
fixed to zero, has

δk(V (p1, . . . , pr)) =
∑

∅6=L⊆[r]

∫
Ir−|L|

δk

((
UL|[r+1...m]:0

)∣∣∣
[r]\L:t

)
dt

= δk

(
U[r]
∣∣
[r+1...m]:0

)
+

∑
∅6=L⊆[r]
|L|≤r−1

∫
Ir−|L|

δk

(
UL|[m]\L:(t,0)

)
dt

= δk

(
U[r]
∣∣
[r+1...m]:0

)
,
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by the induction hypothesis. But from the definition of SJA, and in particular (47),
we have that δk(V (p1, . . . , pr)) = 0, which concludes the proof.

Appendix B. Convexity and duality. In this section we discuss the convexity
constraint of the utility functions. For clarity, we focus on the simple case of a single
bidder and a single item. We show that the convexity constraint is not necessary
for regular8 distributions. And in the opposite direction, we exhibit a nonregular
distribution for which the convexity constraint cannot be dropped without affecting
optimality.

The primal program (4) (taking into consideration (5)) for this case is

sup
u

u(H)Hf(H)− u(L)Lf(L)−
∫ H

L

u(x)(f(x) + (xf(x))′) dx

subject to

u′(x) ≤ 1,(z(x))
u′(x) ≥ 0,(s(x))
u′′(x) ≥ 0,(w(x))
u(x) ≥ 0.

Notice that there is no reason to include u(L) = 0 since this holds for the optimal
solution; that is because if u(x) and u(x) − c are both feasible solutions and c is a
positive constant, then the corresponding objectives differ by cHf(H) − cLf(L) −∫H
L
c(f(x) + (xf(x))′) dx = −c(H ·F (H)−L ·F (L)) < 0; this shows that the optimal

solution has u(x) = 0 for some x.
In our treatment of the subject in the main text of the paper, we dropped the

constraints labeled by the dual variables w(x) and for the most part we also dropped
the ones corresponding to s(x). We did this to keep the primal and dual systems
simple. More importantly, there is a strong reason for ignoring the constraints corre-
sponding to w(x) for multiparameter domains: the convexity constraints ∇2u(x) � 0
(that is, the Hessian of u being positive semidefinite) are not linear in u (unlike the
one-dimensional case, in which the constraint u′′(x) ≥ 0 is linear in u).

In the rest of this subsection, we investigate when the simplified systems are
optimal. We first drop the constraints corresponding to convexity to get the dual

inf
z,s

∫ H

L

z(x) dx

subject to

z′(x)− s′(x) ≤ f(x) + (xf(x))′,(u(x))
z(H)− s(H) ≥ Hf(H),(u(H))
z(L)− s(L) ≤ Lf(L),(u(L))
z(x), s(x) ≥ 0.

Lemma B.1. For regular distributions, the above primal and dual programs give
the optimal value.

8A distribution is called regular when x− 1−F (x)
f(x) is nondecreasing.
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Proof. We have three linear programs here: the original primal program, the
relaxed primal program in which we dropped the constraints labeled w(x), and the
dual program. The values of the three programs are clearly in a nondecreasing order,
due to relaxation and weak duality.

Therefore, it suffices to give a feasible dual solution which achieves the same value
with the original primal problem. From Myerson [27], we know that the original primal
program has value

∫H
L

max(0, ϕ(x))f(x) dx, where ϕ(x) = x − 1−F (x)
f(x) is the virtual

value function. Since we consider regular distributions, ϕ(x) is nondecreasing. We
define the following dual solution:

z(x) = max(0, ϕ(x))f(x),
s(x) = −min(0, ϕ(x))f(x).

We first show that this constitutes a feasible dual solution. Clearly z(x) and s(x) are
nonnegative and z(x)− s(x) = ϕ(x)f(x). This gives

z′(x)− s′(x) = (ϕ(x)f(x))′ = f(x) + (xf(x))′,
z(H)− s(H) = ϕ(H)f(H) = Hf(H),
z(L)− s(L) = ϕ(L)f(L) = Lf(L)− 1 ≤ Lf(L),

which shows that it is a feasible dual solution. The lemma follows by observing
that the dual objective is

∫H
L
z(x) dx =

∫H
L

max(0, ϕ(x))f(x) dx, equal to the value
obtained by Myerson’s optimal mechanism.

We now exhibit a (nonregular) distribution for which the relaxed primal and the
dual give suboptimal solutions. Consider the probability distribution with cumulative
distribution function

F (x) = 1− (1− x)(1 + x(2.7x− 2.9)),

over the unit interval I, depicted on the left of Figure 6. Probability distribution F is
not regular and its revenue function R(x) = x(1−F (x)) is not concave. The revenue
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(a) The distribution
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(b) The revenue curve R(x) = x(1− F (x))

Fig. 6. The probability distribution in (a) is not regular and does not have concave revenue
curve, i.e., F (x) + xf(x) − 1 is not monotone. Its revenue curve is shown in (b). The points x0,
x2, and x3 are extrema; the point x1 has the same revenue with x3.
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(b) Relaxed optimal solutions

Fig. 7. Panel (a) shows the optimal solutions for the distribution of Figure 6. The function
z(x) is part of the optimal dual solution when we include the convexity constraint. Panel (b) shows
the optimal solutions when we drop the convexity constraint.

curve is shown on the right of the figure. The points x0, x2, and x3 are extrema; the
point x1 induces the same revenue with x3.

Figure 7(a) shows the optimal solutions. The optimal primal solution is u(x) =
max(0, x−x0) and corresponds to the deterministic mechanism with reserve price x0.
The figure also shows z(x) of the corresponding dual solution. This was computed by
taking the dual program including the w(x) constraints corresponding to convexity;
showing how we computed this z(x) is beyond the scope of this appendix note and
we only provide it so that the reader can compare it with the relaxed solution in the
right part of the figure.

Figure 7(b) shows the optimal solutions for the relaxed primal program and its
dual. The dual solution has z(x) = max(0, ϕ(x))f(x) and s(x) = −min(0, ϕ(x))f(x).
As it was shown in the proof of the above lemma, this is a feasible dual solution. It
corresponds to the primal solution shown in the figure.

The value of the dual solution is∫ 1

0
z(x) dx =

∫ x2

x0

−R′(x) dx+
∫ 1

x3

−R′(x) dx

= R(x0)−R(x2) +R(x3)−R(1) = R(x0)−R(x2) +R(x3).

It is straightforward to verify that the indicated primal solution gives the same value,
which shows that they are both optimal. However, the primal solution is not convex.
Furthermore, its value R(x0)−R(x2)+R(x3) is strictly higher than the value R(x0) of
the valid optimal solution, because R(x3) > R(x2). Therefore the convexity constraint
is essential to obtain the optimal solution.

Appendix C. Duality for unbounded domains. As we mentioned in the
presentation of the duality framework in section 3, for it to make sense as it is we need
the integrals in the basic transformation of the primal revenue-maximization objective
in expression (5) to be well defined. This is definitely the case when we have bounded
domains, i.e., when the upper-boundary Hi,j of each interval Di,j = [Li,j , Hi,j ] is
finite: all integrals in (5) are finite and the integration by parts is valid. This of
course includes the special case of uniform distributions which is the main topic in
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this paper. We will now discuss how one can still use this duality framework in cases
where the domain D is not bounded.

For the sake of clarity, let’s assume for the remaining of this section that we have
a single bidder and that item valuations are i.i.d. from some distribution F with pdf f
over an interval [L,H], L ≥ 0. First notice that, even for unbounded domains where
H =∞, the critical integral

(50)∫
D−j

Hj u(Hj ,x−j) f(Hj ,x−j) dx−j = Hf(H)
∫

[L,H]m−1
u(H,x−j)

∏
l 6=j

f(xl) dx−j

in (5) may still converge as H → ∞. In such a case, the duality framework from
section 3 can be applied as it is: one just has to take the limit of H → ∞ wherever
H appears, and in particular the weak duality Lemma 3.2 is still valid if one replaces
condition zj(H,x−j) ≥ Hf(H,x−j) by its natural limiting version of

lim
H→∞

zj(H,x−j)−Hf(H)
∏
l 6=j

f(xl)

 ≥ 0.

For example, a sufficient condition for distributions with unbounded support to still
induce bounded values in (50) is to have finite expectation. This is a rather natural
assumption to make and is standard for example in the works of Myerson [27] and
Krishna [20]. To see why (50) is finite, it can be rewritten as Hf(H) Ex−j∼Fm−1

[u(H,x−j)] and so, due to the derivatives constraint ∇u(x) ≤ 1m, it is upper-
bounded by Hf(H) Ex−j∼Fm−1 [H+

∑
l 6=j xj ] = H2f(H)+(m−1)Hf(H) E[X]. Now,

if we take into consideration that any bounded-expectation distribution must have
f(x) = o(1/x2) since E[X] =

∫
xf(x) dx must converge, then it is easy to see that

this expression converges as H →∞, and in fact vanishes to zero.
However, this might not be true for distributions with infinite expectation, for

example the equal revenue distribution where f(x) = 1/x2 over the interval [1,∞). In
such a case, we can follow a different path in order to use our duality framework. One
can take the truncated version of the distribution within a finite interval, i.e., consider
the distribution Fb(x) ≡ 1

F (b)F (x) over the interval [L, b] for any b ≥ L, apply the
duality theory framework in this finite case, and then study the behavior as b → ∞.
As the next Theorem C.1 proves, this process will be without loss.

In the following we will use the notation Rev(F ) from [16] to denote the op-
timal revenue when item valuations follow the joint distribution F . One last re-
mark before stating the theorem is that, whenever one deals with a specific case of
the optimal revenue problem, he has to make sure that it is well defined, i.e., that
Rev(F ) < ∞ for the particular distributional priors F . This might seem obvious,
but let us note here that it is not the case for any probability distribution. For ex-
ample, if we consider i.i.d. valuations from the Pareto distribution f(x) = 1

2x
−3/2 ,

x ∈ [1,∞), the expected (Myerson) revenue by selling a single item at a price of t is
t(1 − F (t)) = t(1 − 1 + t−1/2) = t1/2 which tends to infinity. Some simple sufficient
conditions for bounded optimal revenue in the i.i.d. case where the valuations come
from a product distribution Fm are the bounded expectation of the distribution F ,
since by individual rationality (IR) one trivially gets the bound Rev(Fm) ≤ mE[X],
and the bounded Myerson revenue Rev(F ) for the single-item case, since from the
work of Hart and Nisan [16] we know that there exists a constant c > 0 such that
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c
log2m

Rev(Fm) ≤ SRev(Fm), where SRev denotes the optimal revenue by selling

the items independently, so we get Rev(Fm) ≤ m log2m
c Rev(F ). The former con-

dition is stronger. For example, the equal revenue distribution does not have finite
expectation but it does induce a finite Myerson revenue of 1.

Theorem C.1. Let F be a probability distribution over [a,∞), a ≥ 0, such that
Rev(Fm) < ∞. Then, if Fb denotes the truncation of F in [a, b], b ≥ a, and
limb→∞Rev(Fmb ) converges, it must be that

lim
b→∞

Rev(Fmb ) = Rev(Fm).

Proof. Let u be the utility function of an optimal selling mechanism when valu-
ations are drawn i.i.d. from F . The restriction of u in [a, b] is a valid utility function
for the setting where valuations are drawn i.i.d. from Fb and also we know that
F (x) = F (b)Fb(x) for all x ∈ [a, b]. Combining these we get

Rev(Fm)

=
∫

[a,∞)m

x · ∇u(x)− u(x) dFm(x)

=
∫

[a,b]m
x · ∇u(x)− u(x) dFm(x) +

∫
[a,∞)m\[a,b]m

x · ∇u(x)− u(x) dFm(x)

= Fm(b)
∫

[a,b]m
x · ∇u(x)− u(x) dFmb (x) +

∫
[a,∞)m\[a,b]m

x · ∇u(x)− u(x) dFm(x)

≤ Fm(b)Rev(Fmb ) +
∫

[a,∞)m\[a,b]m
x · ∇u(x)− u(x) dFm(x).

Next, for any b ≥ a, let ub be the utility function of an optimal selling mechanism
when valuations are drawn i.i.d. from Fb. This utility function can be extended to a
valid utility function ub over the entire interval [a,∞) in the following way:

ub(x) = ub(γb(x)) + (x− γb(x)) · ∇ub(γb(x)), x ∈ [a,∞)m,

where γb(x) is the pointwise minimum of x and (b)m, i.e., the m-dimensional vector
whose jth coordinate is min{xj , b}.

Since ub is a convex function with partial derivatives in [0, 1], so is the extended
ub. This means that we immediately get

Fm(b)Rev(Fmb ) ≤ Rev(Fm).

Now the theorem follows from the facts that limb→∞ Fm(b) = 1 and

lim
b→∞

∫
[a,∞)m\[a,b]m

x · ∇u(x)− u(x) dFm(x) = 0.

The last equality is due to the fact that
∫

[a,∞)m x · ∇u(x)− u(x) dFm(x) is bounded
by assumption.
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