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Abstract

In this work we present a general duality-theory framework for revenue maximization in
additive Bayesian auctions involving multiple items and many bidders whose values for
the goods follow arbitrary continuous joint distributions over some multi-dimensional
real interval. Although the single-item case has been resolved in a very elegant way by
the seminal work of Myerson [1981], optimal solutions involving more items still remain
elusive. The framework extends linear programming duality and complementarity to
constraints with partial derivatives. The dual system reveals the natural geometric
nature of the problem and highlights its connection with the theory of bipartite graph
matchings.

We demonstrate the power of the framework by applying it to various special
monopoly settings where a seller of multiple heterogeneous goods faces a buyer with
independent item values drawn from various distributions of interest, to design both
exact and approximately optimal selling mechanisms. Previous optimal solutions were
only known for up to two and three goods, and a very limited range of distributional
priors. The duality framework is used not only for proving optimality, but perhaps
more importantly, for deriving the optimal mechanisms themselves.

Some of our main results include: the proposal of a simple deterministic mechanism,
which we call Straight-Jacket Auction (SJA) and is defined in a greedy, recursive way
through natural geometric constraints, for many uniformly distributed goods, where
exact optimality is proven for up to six items and general optimality is conjectured; a
scheme of sufficient conditions for exact optimality for two-good settings and general
independent distributions; a technique for upper-bounding the optimal revenue for
arbitrarily many goods, with an application to uniform and exponential priors; and
the proof that offering deterministically all items in a single full bundle is the optimal
way of selling multiple exponentially i.i.d. items.
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Chapter 1

Introduction

1.1 Games, Mechanisms and Auctions

Consider a monopolist of a single good facing multiple buyers. What selling mechanism
should he deploy in order to maximize his1 revenue? A natural choice, for instance,
would be to ask from the buyers to submit bids, and then just allocate the item to
the player with the highest offer, for a payment equal to her bid. This is known as a
first-price auction. Notice that there is an underlying game taking place here: each
buyer knows how much the item is worth to her, and the available strategies are what
bid to submit; being rational and selfish, she might lie about her true value for the item
if this is to increase her own personal gain. For example, assume two buyers, who value
the good £10 and £20, respectively. Think of this as the “amount of happiness” they
receive in case they win the item, called valuation. If players were to be completely
honest, the seller could extract a full revenue of £20 (from the first buyer). However, in
such an auction the first player would have a motive to lie, declare a lower bid of £10.05,
still get the item and at the same time also manage to strictly reduce the payment she
has to submit. This kind of behaviour can cause a high degree of complexity both
in analyzing, as well as implementing, a stable equilibrium state for the system, due
to the various interweaving and contradicting preferences and reactions of the players.
So, we would like to design auctions which can make sure players are truthful, that is
they have no incentive to misreport their private preferences. This is essentially the
subject of the area known as mechanism design. For example, a truthful auction here
would be to allocate the item to the highest-bidding buyer but only charge her the
second-highest bid, known as a second-price or Vickrey auction. It is simple to verify
that, by honestly reporting a bid equal to her own private value for the item, each
buyer maximizes her utility, i.e. her valuation minus the payment, no matter what the
other player chooses to do. Put it in game-theoretic terms, truth-telling is a dominant

1Without implying any social correlation whatsoever, and for reasons of simplicity and clarity,
throughout this thesis we choose to use masculine pronouns when referring to the seller and feminine
when referring to the bidders of an auction.
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strategy for all players.
The auctioneer has some prior, incomplete knowledge of the buyers’ private val-

ues for the goods, in the form of a joint probability distribution. The goal then is to
design an auction that maximizes the expected revenue of the seller, that is the total
payment received from the buyers, under that distribution. Let’s take a moment here
to contemplate on the vastness of available options. The auctions to consider can be
deterministic, like the first- and second-price ones given above, but also randomized
lotteries: for example, charging the players a certain amount in exchange for a chance
of winning the item with a given probability; they can also be indirect, unlike the ones
we’ve seen so far, meaning that instead of asking the players for a straightforward rev-
elation of their values in the form of bids, they may demonstrate a much more complex
structure: multiple rounds, involving interaction between the designer and the players
through a general form of messages/actions; even truthfulness can be challenged: it is
without doubt a desirable feature, but on the other hand we may be willing to make
compromises if this is to increase our profits.

Fortunately, due to the celebrated Revelation Principle, it can be shown that we can
restrict attention just in direct-revelation, truthful mechanisms, without a loss for the
revenue maximization objective. This is a great help in our quest for optimal auction
design, since it reduces the optimization space significantly, both in terms of size but
also in complexity of structure. As a matter of fact, for the specific example of a single
good with many buyers and values drawn from independent distributions, Myerson
showed in his seminal work [58] that a simple deterministic mechanism, a simple twist
to the standard second-price auction, can achieve exact optimality: just add a reserve
price, i.e. a threshold under which no buyer can win the item. Equivalently, this can
be seen as introducing a “dummy” player in the auction with a bid equal to this price.
Myerson also provides an elegant, closed-form formula for determining that threshold.

Disappointingly enough though, more than 30 years after that work, optimal auc-
tions for more than just a single item remained completely elusive. Despite the efforts
of economists, and more recently computer scientists as well, the quest for generalizing
Myerson’s results in multidimensional settings has been unsuccessful: we have a very
poor understanding of the structure of revenue-maximizing auctions, even in the case
of a single buyer and just two or three goods.

Our goal in this thesis is to take a step forward towards that direction: present a
new way of attacking the problem through the development of a novel, general duality-
theory framework that can be then applied in various special cases to give multiple
new results, as well as provide us with a deeper and more clear understanding of the
structure and characteristics of multidimensional optimal auctions.
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1.2 Outline of the Thesis and Main Results

The building block for the majority of the results in this work is a new duality-theory
framework for revenue maximization in settings involving multiple items and many
additive-valuation buyers, whose values for the goods are drawn from an arbitrary
continuous joint distribution over some multidimensional real interval. We stress here
that we do not impose a requirement for determinism but optimization is done with
respect to the wider class of all feasible randomized auctions, i.e. we allow for lotteries.

This framework is developed in its full generality in Chapter 3 and its critical
components, namely weak duality and (approximate) complementarity, are formally
proved. When designing these tools, our priority was to make them resemble as much
as possible their counterparts from classic linear programming theory, both in form but
also in usage. As a result, we believe the reader will immediately feel familiar with the
formulations and tools, which involve simple, closed-form expressions that can readily
provide manageable formulas when the particular distributional priors are plugged-
in. Furthermore, this can result in a more intimate understanding of the underlying
mechanics, and better and more natural intuition with respect to the results. Many
fine points and aspects of the framework are also discussed in Section 3.3.

A critical feature that assists this duality approach is the formulation of the rev-
enue maximization problem as a functional optimization one, with respect to the utility
functions of the players. This analytic approach is achieved by a well-known charac-
terization of truthfulness through these functions’ derivatives. We give the necessary
background and fix our environment and notation in Chapter 2. As a warm-up, in
Section 2.3.3 we also present some very simple approximation results.

The remainder of the thesis is devoted to demonstrating the use of the duality
framework by applying it to various open problems in multidimensional optimal auc-
tions. In particular, we will restrict our attention to single-buyer settings with inde-
pendently (but not necessarily identically) distributed item values. Previous related
work is extensively discussed in Section 2.4.

First, in Chapter 4 we deal with the “canonical” open problem in the area, that
of maximizing the revenue of a monopolist of multiple heterogeneous goods facing a
buyer whose values for the items are uniformly distributed. We propose a deterministic
selling mechanism, called Straight Jacket Auction (SJA), prove its optimality for up
to six items and conjecture this holds generally. Duality is used not only for the proof
of optimality, but perhaps more importantly, in the design of SJA itself, which leads
to a novel understanding of the particular setting: interesting notions from geometry
and the theory of bipartite graph matchings come into play, and the definition of SJA
demonstrates a surprising recursive character.

We then focus on two-item settings. This restriction on the number of goods will
allow us a much greater degree of generality and abstraction with respect to the val-

3



uation priors. In Chapter 5 we provide sufficient conditions for revenue maximization
in a two-good monopoly where the buyer’s valuations for the items come from inde-
pendent (but not necessarily identical) distributions over bounded intervals. Under
certain distributional assumptions, we give exact, closed-form formulas for the prices
and allocation rules of the optimal selling mechanisms. As a side result we give the
first example of an optimal mechanism in an i.i.d. setting over a support of the form
[0, b] which is not deterministic. Since our framework is based on duality techniques,
we were also able to demonstrate how slightly relaxed versions of it can still be used
to design mechanisms that have very good approximation ratios with respect to the
optimal revenue, through a “convexification” process.

For the special case of uniform distributions, in Section 5.6 we provide a new, much
simplified and straightforward proof to a result of Pavlov [66] regarding the revenue
maximizing mechanism for selling two goods with uniformly i.i.d. valuations over in-
tervals [c, c+ 1], to an additive buyer. This is done by explicitly constructing optimal
dual solutions to a relaxed version of the problem, where the convexity requirement
for the bidder’s utility has been dropped. Their optimality follows directly from their
structure, through the use of exact complementarity. For c = 0 and c ≥ 0.092 it turns
out that the corresponding optimal primal solution is a feasible selling mechanism, thus
the initial relaxation comes without a loss, and revenue maximality follows. However,
for 0 < c < 0.092 that’s not the case, providing the first clear example where relaxing
convexity provably does not come for free, even in a two-item regularly i.i.d. setting.

Next, in Chapter 6 we turn our attention to approximation techniques when an
arbitrary number of items are involved. Using the duality theory framework we derive
simple, closed-form formulas for bounding the optimal revenue of a monopolist selling
many heterogeneous goods, in the case where the buyer’s valuations for the items come
i.i.d. from a uniform distribution and in the case where they follow independent (but
not necessarily identical) exponential distributions. We apply this in order to get in
both these settings specific performance guarantees, as functions of the number of
items m, for the simple deterministic selling mechanisms studied by Hart and Nisan
[38], namely the one that sells the items separately and the one that offers them all in
a single bundle.

In Section 6.3.2 we also propose and study the performance of a natural randomized
mechanism for exponential valuations, called Proportional. As an interesting corol-
lary, for the special case where the exponential distributions are also identical, we can
derive that offering the goods in a single full bundle is the optimal selling mechanism
for any number of items. To our knowledge, this is the first result of its kind: finding
a revenue-maximizing auction in an additive setting with arbitrarily many goods.

Finally, there are a couple of topics that, although we found to be interesting on
their own, especially for possible future reference by the interested researcher, we choose
to present them in the appendix so as not to interrupt the dynamic of the main text.
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In Appendices A.2 and A.4 we give alternative, explicitly constructive dual solutions
for the case of two uniformly and exponentially distributed goods, respectively, and
in Appendix A.3 we provide an abstraction of an upper-bound technique we used in
Section 6.1 for the special case of uniform distributions to general distributions, that
involves the extension of the traditional Myersonian [58] notions of virtual valuations
and regularity.

1.3 List of Papers

The majority of our results in this thesis are from a series of papers, listed below for
completeness. Those in Appendices A.2 to A.4 as well as the discussion in Section 2.3.3,
however, appear here for the first time.

[1] Yiannis Giannakopoulos and Elias Koutsoupias
Selling Two Goods Optimally
In Proceedings of 42nd International Colloquium on Automata, Languages, and
Programming (ICALP’15), July 2015.
(Best paper award)

[2] Yiannis Giannakopoulos
Bounding the Optimal Revenue of Selling Multiple Goods
In Theoretical Computer Science, 581: 83–96, 2015.

[3] Yiannis Giannakopoulos
A Note on Selling Optimally Two Uniformly Distributed Goods
In CoRR: abs/1409.6925, September 2014.

[4] Yiannis Giannakopoulos and Elias Koutsoupias
Duality and Optimality of Auctions for Uniform Distributions
In Proceedings of the 15th ACM Conference on Economics and Computation
(EC’14), pp. 259–276, June 2014.
Full version in CoRR: abs/1404.2329.
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Chapter 2

Fundamentals of Auction Theory

In this chapter we formalize the notions intuitively discussed in the introductory Chap-
ter 1. We will give a crash course in the fundamentals of Auction Theory, that are
needed in order to develop our main results in the following chapters. We do that, by
providing a somehow more abstract path through Mechanism Design; we believe this
more rigorous approach is essential for the deeper understanding of the mechanics, but
even more importantly, of the powerful foundations and potential of auction design.
However, in no way this is a complete, or even balanced, introduction to the subject,
something that would be infeasible for the scope of this thesis; the interested reader
is encouraged to look at some of the excellent textbooks and surveys related to the
subject, e.g. [46, Part A], [45], [44, Chapter 9] and [47].

2.1 Notation

Let us now fix some initial notation that will be used throughout the rest of the
thesis. For any positive integer m, we denote [m] = {1, 2, . . . ,m}. The reals are
denoted by R, their nonnegative subset by R+ and the unit interval by I = [0, 1]. In
general, we will use a bold typeface for matrices and vectors, and a normal-weight
type for their single-dimensional components, e.g. x = (x1, x2, . . . , xm) ∈ Rm is an
m-dimensional real vector. Let 0m = (0, 0, . . . , 0) and 1m = (1, 1, . . . , 1) denote the
m-dimensional zero and unit vectors, respectively. We will drop subscript m whenever
this causes no confusion. For two vectors x,y ∈ Rm we write x ≤ y as a shortcut to
xj ≤ yj for all j ∈ [m]. Inner vector product will be denoted by standard dot notation
x · y = ∑m

j=1 xjyj. For any matrix x ∈ Rn×m, xi will denote its i-th (m-dimensional)
row vector.

It is standard, and very convenient, in game-theoretic treatments to use x−j for the
vector we are left with if we remove the j-th coordinate from x, i.e.

x−j = (x1, . . . , xj−1, xj+1, . . . , xn).
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Using that, one can have (y,x−j) to be the result of replacing the i-th component of x
with a new value y. In a similar way, if x ∈ Rn×m is a matrix, then we can change the
value at the i-th row and j-th column element xij using (y,x−i,j).

For a real function g : Rm → R we use standard notation∇g(x) =
(
∂g(x)
∂x1

, ∂g(x)
∂x2

, . . . , ∂g(x)
∂xm

)
and extending this to functions g : Rn×m → R over matrices, for i ∈ [n] we will denote

∇i g(x) ≡
(
∂g(x)
∂xi,1

,
∂g(x)
∂xi,2

, . . . ,
∂g(x)
∂xi,m

)
.

Notice how only the derivatives with respect to the variables in row xi appear.
For probability distributions, we will use upper-case symbols like F to denote their

(cumulative) distribution function and lower-case f for their density. If X is a random
variable, then X(i:n) will denote the i-th order statistic of X, i.e. the i-th smallest out
of n independent draws from X: X(1:n) ≤ X(2:n) ≤ · · · ≤ X(n:n). We will sometimes
use the shortcut U for the uniform distribution over I, that is distribution F (x) = x,
and E(λ) for the exponential distribution over R+ with parameter λ > 0, i.e. F (x) =
1− e−λx. For simplicity, we will also use E ≡ E(1). Harmonic numbers are denoted by
Hn = ∑n

i=1
1
i
.

Finally, for some set-theoretic notation, we use BA for the family of all functions
from set A to B, and A × B for the Cartesian product of A and B. We denote∏m
j=1Ai = A1×A2×· · ·×Am, and deploying the game-theoretic notation we introduced

above, if A = ∏m
j=1Aj then for any j ∈ [m]: A−j = ∏j−1

k=1Ak ×
∏m
k=j+1Ak. We will

denote the standard Lebesgue measure over Euclidean spaces with µ, and we will say
that a certain property holds almost everywhere (a.e.) if it is true except from a set of
zero measure.

2.2 Mechanism Design

2.2.1 Games

Any serious approach to the design and analysis of auctions goes through their mod-
elling as games of incomplete information, and thus some minimal amount of game-
theoretic terminology would be needed for introducing the key Mechanism Design no-
tions in Section 2.2.2.

You can think of a game G as a structure consisting of a finite set of players [n], and
for each player i ∈ [n] a set of strategies (or actions) Si available to her together with a
utility (or payoff ) function ui : ∏n

i=1 Si −→ R over them. The intuitive interpretation
is that, every possible strategy profile (or outcome) s = (s1, s2, . . . , sn) ∈ S = ∏

i Si of
G results in an amount of “happiness” measured by ui(s) for each player i, and thus,
being fully rational and selfish, each one of them will try to choose a strategy si that
will maximize her own payoff.

7



The most robust solution concept (or equilibrium) of such a game would be one at
which each player has a clear optimal strategy, that maximizes her personal gain no
matter what the other players would choose to do:

Definition 2.1 (Dominant strategies). Let G = ({Si}i∈[n], {ui}) be a game. A strategy
profile s∗ is a dominant strategy equilibrium of G if, for every player i ∈ [n], s∗i is a
dominant strategy for i, i.e.

ui(s∗i , s−i) ≥ ui(si, s−i) for all si ∈ Si, s−i ∈ S−i.

Notice here that not all games have dominant strategy equilibria (see e.g. the “Battle
of the Sexes” game), and thus weaker solution concepts with guaranteed existence have
been developed for the analysis of players’ behaviour, most notably the celebrated Nash
equilibrium [61].

Bayesian games Many times we want to model strategic interactions between agents
when full knowledge of their private preferences among all of them is a highly unrealistic
assumption to make. For instance, a player usually will know her own utility function
but only have some incomplete information about the utilities of the other participants,
given by probability distribution. Then, she has to base her strategic analysis and
behaviour on expectation over her prior beliefs for the preferences of the others.

To formalize this, we define an incomplete information (or Bayesian) game to con-
sist, for every player i ∈ [n], of a set of types Ti, a set of actions Ai and a utility
function ui : Ti×

∏
iAi −→ R. The strategy set of a player i then is a rule that relates

her possible types to actions: Si = ATii . There is also a probability distribution F over
the space of possible type profiles T = ∏n

i=1 Ti, which is common knowledge among the
players.

An intuitive way of interpreting this definition is the following: each type ti is a
parameter that determines how the preferences of player i would look like, what “kind
of agent” she would be. Think of this as something beyond the control of the players,
which is going to be determined by “nature”. Then, a type profile t is drawn from
distribution F and a signal with the actual value of ti is sent to each player i (but
not to the other players). Now, there is essentially no layer of uncertainty any more
regarding the payoffs, and a full information game ({Ai}, {ũi}) could be played over
the possible actions ai ≡ si(ti) of the players, where ũi(a) ≡ ui(ti; a) for all a ∈ ∏iAi.
But there is a catch: since player i is unaware of what types t−i nature actually chose
the other players to be, she has to base her game-playing analysis on expectation with
respect to distribution F , conditioned of course upon her own realized value ti. Put it
another way, from player’s i perspective, she faces a distribution over a whole family
of possible full-information games.

The notion of a dominant strategy equilibrium can be naturally generalized to
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Bayesian games, to denote an situation where each player has an optimal plan of action,
no matter how the other players decide to act and no matter the realized state of nature
t ∼ F . Such a solution concept is extremely powerful: if it exists, then it definitely
captures the expected outcome of the game, assuming the players demonstrate rational
behaviour:

Definition 2.2 (Dominant strategies in Bayesian games). Let G = ({Ti}i∈[n], {Ai}, {ui}, F )
be an incomplete information game. A strategy profile s∗ is a dominant strategy equi-
librium of G if, for every player i ∈ [n], s∗i is a dominant strategy for i, i.e.

ui(ti; (s∗i (ti), a−i)) ≥ ui(ti; (ai, a−i)) for all ti ∈ Ti and ai ∈ Ai, a−i ∈ A−i.

However robust and desirable such an equilibrium might be, it essentially overrides
a priori the Bayesian layer of incomplete information: notice how distribution F is
not used anywhere in Definition 2.2. Thus, the following provides a weaker, but still
natural solution concept for Bayesian games:

Definition 2.3 (Bayes-Nash equilibrium). Let G = ({Ti}i∈[n], {Ai}, {ui}, F ) be an
incomplete information game. A strategy profile s∗ is a Bayes-Nash equilibrium of
G if no player i has an incentive to unilaterally change her strategy, under her prior
knowledge of nature. Formally, for every i ∈ [n],

Et−i∼F−i|ti

[
ui(ti; (s∗i (ti), s∗−i(t−i)))

]
≥ Et−i∼F−i|ti

[
ui(ti; (ai, s∗−i(t−i)))

]
for all ti ∈ Ti and ai ∈ Ai, where F−i|−ti denotes the conditional distribution of F upon
its i-th component being realized at ti.

For the rest of the thesis, we make the deliberate choice to use dominant strategies
as the default solution concept for our analysis, due to its robustness and clarity. Also,
since it is the strongest notion, all results can be translated to the realm of Bayes-Nash
equilibria in a straightforward way. So, except stated otherwise, equilibrium from now
on will refer to dominant strategy equilibrium.

For a serious treatment of the subject of Game Theory we recommend any of the
standard textbooks [28, 65, 59].

2.2.2 Mechanisms

Although games seem to capture the fundamental notion of strategic interaction be-
tween players, the model so far is completely passive: the system somehow reaches
a stable state, an equilibrium point, which is an internal property of the game and
we can have no control over it at all. But for the auction problems we are interested
in studying, there is some external designer who wants to create protocols that im-
plement some desired objective, for example maximization of the seller’s revenue or
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minimization of the total social cost. This means that we would like to have a way
of designing rules for the games in a way that the previous, passive convergence to
a stable state will coincide with an outcome that satisfies our design needs. This is
essentially the subject matter of the entire area of Mechanism Design, which for that
reason sometimes is being referred to as reverse game theory.

In general, a Bayesian mechanism design environment comprises of a finite set
of players [n], where player i is of type ti ∈ Ti and, as discussed in the previous
Section 2.2.1, the type profile t will be instantiated by “nature” according to some
distribution F which is prior common knowledge among the players. However, each
actual realized value ti is private knowledge of the corresponding i-th player. There
is also a set of possible outcomes O, over which the players have different preferences,
represented by a valuation function which of course will depend also on her own realized
type ti, vi : Ti ×O −→ R. Think of vi(ti, o) as the amount of “happiness” that agent i
will receive if she happens to be of type ti and outcome o occurs.

Each player i has also a set of available actions Ai. Let A = ∏n
i=1Ai. A mechanism

M comprises of a decision rule x : A −→ O and a payment rule pi : A −→ R for
each player. The way to interpret this is that, after observing the joint action profile
a = (a1, . . . , an) of the players, a mechanism selects an outcome x(a) ∈ O and charges
each player i an amount of pi(a). Then, the personal gain of that agent is captured by
her utility function ui : Ti × A −→ R defined by

ui(ti; a) ≡ vi(ti, x(a))− pi(a). (2.1)

Each player thus, being fully rational and selfish, has to choose among her available
actions Ai in order to maximize her own utility function. However, this has to be done
in a Bayesian way of incomplete information: although the decision and allocation rules
of the mechanism are common public knowledge, and the same holds for the valuation
functions of the players, each player knows only her own type ti while her beliefs
about the others are limited to her prior knowledge of distribution F . The important
observation here is that every mechanism induces an incomplete information game,
in the sense of the previous Section 2.2.1, so the strategic behaviour of the players
participating in the mechanisms, their actions and the resulting outcome, can be all
analyzed in terms of that underlying game.

2.2.3 Truthfulness

Mechanisms can in general be rather involved, both computationally and structurally,
since a great amount of flexibility is allowed by the above definition. Admittedly
though, a most natural environment would be one at which the available actions to the
players are just to report their type; in a single-item auction setting for example, like
the one described in Section 1.1, we can think of the type ti of the agent representing
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her personal value for the item and her layer of interaction with the selling mechanism
being the submission of a bid bi to the auctioneer. We call such mechanisms direct-
revelation mechanisms, and they are formally defined by having the property that
Ai = Ti.

Notice that in general these two values above, the actual type ti and the reported
one bi, need not to be equal. In fact, since agents are rational and selfish, they can
and will lie and misreport bi 6= ti if this is to increase their own personal utility,
given by (2.1). The advantages of a mechanism that would have the property of
eliminating such behaviour by not incentivizing participants to lie are obvious: not
only the protocol designer can then be sure that the received input consists of the
actual private information of the agents, and thus implement his desired outcome
in a straightforward way, but also the strategic layer of the game where the players
are expected to reach an equilibrium through an abstract, possibly computationally
infeasible process [23], is removed; the participants know in advance that truth-telling
is optimal for them and so they should not deviate from that:

Definition 2.4 (Truthfulness). A direct-revelation mechanism will be called truthful
(or incentive compatible (IC)1) if truth-telling is an equilibrium of the induced game.
Formally, the identity function over her type space is a dominant strategy for each
player, i.e.

ui (ti; (ti, t−i)) ≥ ui (t′i; (ti, t−i)) for all ti, t′i ∈ Ti and t−i ∈ T−i. (2.2)

The notion of truthfulness can also be defined with respect to the alternative,
weaker notion of Bayes-Nash equilibrium discussed in the previous Section 2.2.1, in
which case it is called Bayesian incentive compatibility (BIC) and condition (2.2) is
naturally adapted to:

Et−i∼F−i|ti [ui (ti; (ti, t−i))] ≥ Et−i∼F−i|ti [ui (t′i; (ti, t−i))] for all ti, t′i ∈ Ti. (2.3)

No matter how useful and desirable truthfulness might be, both socially and with
regards to practical implementation considerations, it still raises a major concern: does
this considerable restriction of the general class of non-direct and non-truthful mecha-
nisms come also with a limitation on their power? Put another way, does this special-
ization restrict the ability of the mechanism designer with respect to what outcomes
he can implement on the system? It turns out that this is not the case, due to the
following celebrated result:

Theorem 2.1 (Revelation Principle [58]). If a mechanism implements a particular out-
come on equilibrium, then there is an equivalent direct-revelation, truthful mechanism

1In the literature this is also denoted as DSIC (dominant strategy incentive compatibility), in order
to emphasize the equilibrium notion under which it is achieved.
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that implements the same outcome on (the truth-telling) equilibrium.

Formally, if for a mechanism M = (x,p) there is an equilibrium of strategies s =
(s1, . . . , sn), then there is a truthful mechanismM′ = (x′,p′) such that

x′(t) = x(s(t)) and p′(t) = p(s(t)),

for all possible type profiles t ∈ T , where s(t) ≡ (s1(t1), . . . , sn(tn)) and p(t) ≡
(p1(t), . . . , pn(t)). Observe that the two mechanisms M and M′ not only select the
same outcome but also use the same payment rule. This is very important for our
analysis in the following chapters of the thesis, since we deal with revenue maximiza-
tion. The essence of the revelation principle is that we can use truthful mechanisms to
achieve the same goals, and in the same way, as with general mechanism. The Reve-
lation Principle holds also in the Bayesian sense: we can use Bayes-Nash equilibrium
implementation instead of dominant strategies and just replace DSIC with BIC truth-
fulness. The proof of Theorem 2.1 is so fundamental that may be considered trivial:
essentiallyM′ simulates the strategy equilibrium s of the players “internally” so that
they don’t need to strategize themselves, rendering misreporting meaningless.

In view of the Revelation Principle, from now on we will focus exclusively in the
study of direct-revelation and truthful mechanisms, and study their properties on the
truth-telling equilibrium. Another very natural property that we would like our mech-
anisms to satisfy is the following:

Definition 2.5. (Individual rationality) A truthful mechanism M = (x,p) will be
called individually rational (IR) if it always induces nonnegative utilities for the players
(at equilibrium). Formally, for every i ∈ [n]

ui(ti; t) ≥ 0 for all ti ∈ Ti, t−i ∈ T−i.

This property makes sure that no player can harm herself by honestly participating
in the mechanism. Otherwise, she would be better of just “staying home”. This is why
IR is also known as voluntary participation.

2.2.4 Welfare Maximization and the VCG Mechanism

We mentioned in the introduction of Section 2.2.2 that the objective of Mechanism De-
sign is to implement particular outcomes under the strategic interaction of the various
players, who can have different and contradicting incentives. Perhaps the most natural
such goal is maximizing the “collective happiness” of the society, which is represented
by the sum of the player valuations ∑n

i=1 vi(ti, o) for a given outcome o ∈ O and agent
types t ∈ T . So, we define the (social) welfare of a Bayesian (direct-revelation, truthful)
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mechanismM = (x,p) as

W(x) ≡ E
t∼F

[
n∑
i=1

vi(ti, x(t))
]
,

where F is the prior common knowledge distribution over the type space T . Mecha-
nisms that maximize social welfare, that is

x(t) ∈ argmax
o∈O

n∑
i=1

vi(ti, o), (2.4)

are called efficient. For instance, the second-price auction we discussed briefly in the
introductory Chapter 1 is efficient, by definition: it allocates the item to the bidder
with the highest value for it2. This Vickrey auction, which is an application of the
second price design paradigm, is a special case of the general VCG mechanism: VCG
is defined by the allocation rule given by (2.4), thus is efficient by definition, and deploys
the following payment scheme that makes it truthful,

pi(t) = max
o∈O

∑
j∈[n]\{i}

vj(tj, o)−
∑

j∈[n]\{i}
vj(tj, x(t)).

In economics terms, this payment rule can be understood as internalizing the external-
ities of every player, that is we ask each player to compensate us for the “harm” her
presence in the mechanism setting causes to the rest of the society. The naming of the
VCG mechanism is a tribute to the work of Vickrey [77], Clarke [20] and Groves [35].

Not all social objectives are (truthfully) implementable and, as a matter of fact, a
celebrated result of Roberts [69] states that if we put no restrictions on the space of
player valuations, and we have at least three available alternatives |O| ≥ 3, then the
only truthful mechanisms are affine maximizers, which are essentially just weighted
variations of the VCG mechanism. Of course, this does not mean that no other so-
cial objectives can be achieved in special, restricted mechanism design settings: for
example, as we will see in the following chapters, the space of truthful mechanisms is
definitely richer in auction settings. Furthermore, there is a fine point worth mention-
ing here: Roberts’ theorem (as well as our own treatment of Mechanism Design up to
now in this chapter) applies to deterministic mechanisms; however, one can allow for
probability distributions over such mechanisms and effectively get a model of random-
ized Mechanism Design that can potentially be much more powerful, something that
we’ll do in the remaining chapters.

For a more thorough treatment of the exciting area of Mechanism Design we rec-
ommend the texts of Fudenberg and Tirole [28, Chapters 6,7], Mas-Colell et al. [55,
chapter 23], Narahari [60] and Vohra [78]. For an algorithmic flavour we refer to Nisan

2Notice that, although the first-price auction does the same, it is not truthful because of the
different price rule.
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[62], Hartline [42] and of course the seminal paper of Nisan and Ronen [63] that laid
the foundations for the entire field now known as Algorithmic Mechanism Design.

2.3 Auction Theory

Now it’s time for us to focus on the specific mechanism design environments that form
the subject matter of this thesis, namely auctions. In an auction setting there are
n players interested in buying m available goods. The set of available outcomes are
the different allocations of items to buyers, that is3 O = [n+ 1][m], and the type ti
of each player i encodes the information about her preferences over these outcomes,
parametrizing her valuation vi(ti, Si), where Si ⊆ [m] is the set of items allocated to
her.

In general combinatorial auctions, no further restrictions are placed on these valua-
tion functions. However, there are some natural special cases of particular interest, for
example additive valuations, where the type ti of a player is made up by m separate
values xi,j for each item j ∈ [m], representing bidder’s i happiness in case of receiving
good j, and the total valuation is just the sum of the values of the received items:
vi(xi;Si) = ∑

j∈Si xi,j. Another important type of valuations is unit-demand ones,
where each buyer is interested only in getting one of the items: vi(xi;Si) = maxj∈Si xi,j.
In the present thesis we will be exclusively studying the first kind of additive auctions:
an intuitive way of thinking about them is that the goods for sale are heterogeneous
and that they cannot substitute each other, so the acquisition of one does not affect
the buyer’s valuation for the others.

In light of the Revelation Principle (see Theorem 2.1), we will be (without loss)
focusing on truthful (IC), direct-revelation selling mechanisms. We will also require
Individual Rationality (IR, see Definition 2.5). So, to fix our notation, every buyer i
will submit bids xi,j for all items j ∈ [m], where xi,j belongs to some interval Di,j =
[Li,j, Hi,j] ⊆ R+. Let Di = ∏m

j=1Di,j and D = ∏n
i=1Di. An auction is a protocol

that, after receiving the players’ bids x, computes allocation and payment rules, a :
D −→ In×m and p : D −→ Rn, respectively; ai,j(x) is the probability with which
item j is given to bidder i and pi(x) is the payment player i is asked to submit to the
seller. In the case that one wants to consider only deterministic auctions, just take
ai,j(x) ∈ {0, 1}. In order for the allocation probabilities to be well defined, we need to
make sure that for all items j ∈ [m]:

n∑
i=1

ai,j(x) ≤ 1 for all x ∈ D.

Then, because of additive valuations, the utility function of each player (see (2.1)) is
3The seller is not obligated to allocate all items, and that’s where [n+ 1] comes from.
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given by
ui(x) = ai(x) · xi − pi(x) =

m∑
j=1

ai,j(x)xi,j − pi(x). (2.5)

This captures the expected (under the randomization of the auction) gain of player i:
the expected sum of the values of the item she manages to purchase, minus the payment
she has to submit to the auctioneer4. Notice that the IR constraint requires these
utilities to be nonnegative. On the other hand, the seller’s own gain is captured by the
total revenue of the auction

n∑
i=1

pi(x) =
n∑
i=1

(ai(x) · xi − ui(x)) , (2.6)

which is a simple rearrangement of (2.5).
The following is an elegant, extremely useful analytic characterization of truthful

mechanisms due to Rochet [70]. For a proof of this we recommend [38].

Theorem 2.2. An auctionM = (a,p) is truthful (IC) if and only if the utility func-
tions ui that M induces have the following properties with respect to the i-th row
components, for all bidders i:

1. ui(x−i, ·) is a convex function

2. ui(x−i, ·) is almost everywhere differentiable with

∂ui(x)
∂xi,j

= ai,j(x) for all items j ∈ [m] and a.e. x ∈ D. (2.7)

The allocation function ai is a subgradient5 of ui.

Theorem 2.2 essentially establishes a kind of correspondence between truthful mech-
anisms and utility functions. Not only every auction induces well-defined utility func-
tions for the bidders, but also conversely, given nonnegative convex functions that
satisfy the properties of the theorem we can fully recover a corresponding mechanism
from expressions (2.7) and (2.6).

2.3.1 Revenue Maximization

There is a Bayesian layer of incomplete information in our environment, given by a
prior joint distribution F over the bid space D, according to which x is going to be
realized. Recall that, although F is common knowledge among the players and the
auctioneer, the actual realization of the bid vectors xi are only privately observed by
the respective player i.

4We will only consider risk neutral players.
5For reference to Convex Analysis notions we recommend the classic text of Rockafellar [72].
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In this thesis we study the problem of maximizing the seller’s expected revenue
based on his prior knowledge of F , under the IR and IC constraints, thus (by Theo-
rem 2.2 and (2.6)) maximizing

R(u;F ) ≡
∑
i∈[n]

∫
D

(∇ui(x) · xi − ui(x)) dF (x) (2.8)

over the space of nonnegative convex functions ui on D having the properties

∑
i∈[n]

∂ui(x)
∂xi,j

≤ 1 (2.9)

∂ui(x)
∂xi,j

≥ 0 (2.10)

for a.e. x ∈ D, all i ∈ [n] and j ∈ [m]. The optimal revenue is defined as

Rev(F ) ≡ sup
u
R(u;F ),

that is the maximum revenue among all feasible truthful mechanisms. A mechanism
inducing utilities u for which R(u;F ) = Rev(F ) will be called an optimal auction.

2.3.2 Myerson’s Optimal Auction

In this section we briefly overview some of the notions and results from the seminal
work of Myerson [58] that will be necessary for our exposition. Recall that the holy
grail of multidimensional optimal auction design is exactly to generalize, in the “right”
way, these elegant ideas to multiple-good settings.

Definition 2.6 (Regular distributions). A probability distribution F over a real do-
main will be called regular if the virtual value function, defined by

φ(x) ≡ x− 1− F (x)
f(x) ,

is (weakly) increasing, where f is the distribution’s density.

Definition 2.7 (Monotone hazard rate). A probability distribution F over a real
domain is said to have monotone hazard rate (MHR) if quantity

f(x)
1− F (x)

is increasing.

It is trivial to see that every MHR distribution is also regular. The inverse however
is not true, as demonstrated by the following important probability distribution:
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Definition 2.8 (Equal-revenue distribution). The probability distribution over [1,∞)
with density and cumulative functions

f(x) = 1
x2 and F (x) = 1− 1

x
,

respectively, is called equal revenue (ER).

The hazard rate of the ER is 1/x2

1/x = 1
x
which is decreasing (and thus it is not MHR)

and its virtual valuation is constant φ(x) = x− x = 0, placing it in the “boundary” of
regularity. Also, it is important to mention here that ER has unbounded expectation:∫∞

1 xf(x) dx =
∫∞

1
1
x
dx =∞. These properties make ER a typical counter-example in

disproving general auction properties, or a test-bed for developing intuition and testing
the validity of others. The reason behind the particular naming will become clear very
soon.

Theorem 2.3 (Myerson [58]). In a single-good setting where the values of the buyers
for the item follow independent regular distributions, the optimal auction allocates the
good by performing a Vickrey auction on the virtual values (see Definition 2.7).

To understand more clearly how Myerson’s auction performs, consider the case of n
identical bidders whose values for the items come from the same distribution F . Then,
a consequence of Theorem 2.3 is that the optimal auction is a second-price one with an
added reserve price equal to the root6 of the virtual value function φ(x). This means,
that the seller essentially inserts into the auction a new “dummy” player with a value
of r = φ−1(0). If she is the winning bidder, then the good remains unsold. Think for
example the typical ascending price auctions where the auction-house sets a starting
price r and the item is sold to the last remaining bidder.

The importance of Myerson’s result lies not only in providing a simple, elegant and
closed-form description of the optimal auction, but also in the fact that this auction
turns out to be deterministic. This is something not trivial at all, since our initial
revenue-maximization is taken with respect to all feasible truthful auctions, including
lotteries. Consider the simple scenario of a seller with a single good facing a buyer,
whose value for the item comes from a regular distribution F . Take this distribution
to be the uniform over the unit interval I. Then, the virtual value is φ(x) = x− 1−x

1 =
2x − 1, so the optimal selling mechanism is for the auctioneer to just offer a take-it-
or-leave-it price of r = 1

2 , the root of φ(x). This results to an (optimal) revenue of
MRev(U) = 1

4 , since the bid has 1
2 probability of being above r. Notice that here we

have used the notation MRev of Hart and Nisan [40] instead of the standard Rev. We
will do that sometimes whenever we want to emphasize the fact that this optimization
is within a single-item Myersonian auction setting. For the exponential distribution

6If φ(x) is not strictly increasing it might be the case that it has multiple roots (see for example
the equal revenue distribution in Definition 2.8). In such a case the roots form a real interval, and we
just take the left boundary of it, i.e. the smallest root.
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E(λ) we would have φ(x) = x− 1−(1−e−λx)
λe−λx

= x− 1
λ
, resulting to a price of r = 1

λ
for a

revenue of 1
λe
. In general, for this single-bidder case, the optimal revenue is thus simply

given by
MRev(F ) = max

r
r(1− F (r)).

For the equal revenue distribution in particular, every choice of r ∈ [1,∞) will result
in the same revenue for the seller, namely MRev(ER) = r

(
1−

(
1− 1

r

))
= 1, which

also explains the naming. Formally, Myerson’s auction in this setting will choose the
smallest price, that is r = 1.

The regularity assumption in Theorem 2.3 is not critical: the theorem can be
appropriately modified to deal with non-regular priors, through an ironing process
of the virtual values proposed by Myerson [58]. However the same is not true for
the independence requirement which is essential, and a great deal of research effort
has been devoted into designing auctions that can handle correlation among bidders,
mostly by approximating the optimal revenue through welfare, using simple, Vickrey-
based auctions (see e.g. [42, Chapter 4]).

One important, general remark about auction design we would like to make here
regards tie-breaking. For example, what happens in Myerson’s auctions if two bidders
have exactly the same nonnegative virtual values, which are both maximum? Who
is going to win the item? In such a scenario, we can e.g. break ties uniformly at
random without affecting the auction’s revenue or truthfulness. However, it is crucial to
remember here that if the probability distributions have well-defined density functions
(which, by the way, is an a priori requirement for regularity due to Definition 2.6) then
“problematic” events like the previous have zero probability measure, thus they are
essentially insignificant for our analysis.

2.3.3 Some Easy Approximation Results

In this section we return to a general setting of n bidders and m goods, with values
coming from independent probability distributions Fi,j. Item-specific priors are denoted
by Fj = ∏n

i=1 Fi,j, and the full joint distribution is denoted by F = ∏m
j=1 Fj.

In the previous section we talked about Myerson’s elegant solution for maximiz-
ing the revenue in single-item auctions (with independent bidders). So, an obvious
thing to wonder is whether these results can be generalized in a simple, direct way
to multidimensional settings involving many goods. As it will become apparent soon
enough, and after reviewing the related work in Section 2.4, this problem turns out to
be extremely challenging and, as a matter of fact, forms the very subject of the present
thesis.

But as a first attempt, it seems natural trying to reduce multi- to single-item
auctions in a direct way, so that one can use Myerson’s formulas. After all, if we know
how to sell optimally each item independently from the others, and the values for the
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items come from independent distributions, then it makes sense to hope that selling
each item separately may be indeed optimal. Unfortunately that is not the case as we
will see shortly, but still it gives one of the simplest and most important multiple-item
auctions, which is also deterministic. We denote its revenue by SRev, i.e.

SRev(F ) ≡MRev(F1) + MRev(F2) + · · ·+ MRev(Fm). (2.11)

At the other end of the spectrum, lies another simple deterministic auction, putting
all items together and offering them as a single full bundle:

BRev(F ) ≡MRev(F1 ∗ F2 ∗ · · · ∗ Fm).

Here F1 ∗ F2 ∗ · · · ∗ Fm ≡ FS is the convolution of distributions F1, F2, . . . , Fm, i.e. if
Xj ∼ Fj are the n-dimensional random variables representing the item values, then FS
is the distribution of the sum of the valuations: S = ∑m

j=1Xj.
In particular, following the discussion in the previous Section 2.3.2 about single-

buyer settings, if Fj ∼ U for all j ∈ [m], we have

SRev(Um) = m

4 and BRev(Um) = sup
x∈[0,m]

x(1− FS(x)), (2.12)

where FS is the Irwin-Hall distribution of the sum of m independent uniform random
variables over I, i.e. (see [37])

FS(x) = 1
m!

bxc∑
k=0

(−1)k
(
m

k

)
(x− k)m, 0 ≤ x ≤ m. (2.13)

In the same way, for independent exponential and for i.i.d. exponential goods, we can
see that

SRev(E) = 1
e

m∑
j=1

1
λj

and SRev(Em(λ)) = m

λe
. (2.14)

These two important deterministic selling mechanisms were extensively studied
by Hart and Nisan [38], who essentially sparked again the interest of the theoretical
computer science community for optimal multidimensional auctions.

Selling the items separately may not be, in general, the optimal selling mechanism
when more than a single item is to be sold. Take for example the case of a single bidder
and two uniformly i.i.d. items over [0, 1]. The optimal way to sell them separately is
by setting a price of 1

2 for each one, resulting in an expetected revenue of 2
4 = 1

2

(from (2.12)). But if we offer the items in a bundle for a price of p, with 0 ≤ p ≤ 1,
then the revenue becomes p

(
1− p2

2

)
; the probability of the sum of two i.i.d. uniform

random variables being less than p equals p2

2 . By selecting p = 3
4 this gives an expected

revenue of 69
128 which is strictly better than 1

2 . Intuitively, this demonstrates how a
seller may have an incentive to offer bundles of items at a discounted price (p = 3

4 <
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Figure 2.1: The upper bound on the approximation ratio of selling separately when the values come
from independent MHR distributions, as described in Theorem 2.4, drawn for n = 1, 2, . . . , 50 players
(and any number of items m). In general, an e-approximation (grey line) can be guaranteed by using
Myerson’s optimal auction. In the special case of identical bidders, the analysis can be improved
further by considering a simple Vickrey auction (blue line).

1
2 + 1

2) instead of selling them separately. However, as we show next, under some
regularity assumptions, it can still provide good, constant approximation ratios of
the optimal revenue. Furthermore, these guarantees can be achieved in almost trivial
ways, by using as subroutines known welfare-approximation techniques from single-
good environments:

Theorem 2.4. If the values of the players for the items come from MHR distri-
butions, then

SRev(F ) ≥ 1
e
·Rev(F ).

Furthermore, if bidders are identical 7 then using the Vickrey auction to sell sepa-
rately every good is 1 + 1

Hn−1 = 1 +O(ln−1 n)–approximate to the optimal revenue.
A plot of this approximation ratio can be seen in Figure 2.1.

In order to prove the theorem we will need the following properties of MHR distribu-
tions, the proofs of which can be found in [47, Appendix C] and [5, Lemma 13]:

Lemma 2.1. For any nonnegative MHR-distributed random variable X,

E[X(n−1:n)] = nE[X(n−1:n−1)]− (n− 1)E[X(n:n)] (2.15)
7That is, Fi,j = Fi′,j for all players i, i′ ∈ [n] and goods j ∈ [m].
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and
E[X(n−1:n−1)] ≥ Hn−1

Hn

E[X(n:n)]. (2.16)

Proof of Theorem 2.4. First consider the case of identical bidders and let Xj ∼ Fj

be the random variable of the value of good j. From the IR constraint, the optimal
revenue cannot exceed the maximum social welfare,

Rev(F ) ≤
m∑
j=1

E
[
Xj

(n:n)
]

and by selling all items separately using the Vickrey auction gives

SRev(F ) ≥
m∑
j=1

E[Xj
(n−1:n)],

since each good is allocated to the second-best bidder. Thus, by using (2.15) and (2.16)
we get an approximation ratio of

Rev(F )
SRev(F ) ≤ max

j∈[m]

E
[
Xj

(n:n)
]

E[Xj
(n−1:n)]

≤ max
j∈[m]

E
[
Xj

(n:n)
]

nE[Xj
(n−1:n−1)]− (n− 1)E[Xj

(n:n)]

≤ max
j∈[m]

E
[
Xj

(n:n)
]

nHn−1
Hn

E[Xj
(n:n)]− (n− 1)E[Xj

(n:n)]

= 1
nHn−1

Hn
− n+ 1

= 1 + 1
Hn − 1

In case of non-identical bidders, instead of the Vickrey auction we can use any other
single-item auction whose revenue can approximate well the maximum welfare at every
step; this can be achieved for example by Myerson’s optimal auction (with reserve
prices) for a factor of e (see [27, Theorem 3.11] for a proof of that).

To the best of our knowledge the statement of Theorem 2.4 as well as its proof
appear here for the first time. However, it may be considered folklore among some
researchers in the field of Optimal Auction Design.

2.4 Related Work

In this section we will briefly survey some of the previous work related to the subject of
the thesis. Our choice is more in favour of depth, rather than breadth: the literature in
optimal auction design has seen an explosion in the last years, and on top of that it often
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comes from different and sometimes disconnected research communities, resulting in
serious difficulties for a third-party to get quickly a clear understanding of the current
state and the various underlying details of open problems. This is exactly our goal
here: to follow this virtual thread, the storyline leading from Myerson’s seminal work to
present-day active research, keeping at all times our point of view set upon the subject
of multidimensional revenue maximization (primarily under additive valuations), with
intermediate stops at what we consider to be the most relevant and important results.
This should prove most useful, for example, to a researcher interested in working in the
field and who wants to get a fast and reliable introduction to the subject. As one would
expect, our presentation is biased towards a theoretical computer science perspective.
For more thorough and holistic treatments we recommend the excellent lecture notes of
Hartline [42], the relevant chapter from the AGT book [43] or the surveys of Klemperer
[46, 45].

The solid foundations of the entire field of rigorous optimal auction design were set
by the seminal work of Myerson [58] that we briefly talked about in Section 2.3.2; My-
erson also later won the 2007 Nobel prize in Economics, partly for these contributions.
Of course, some important results have been also developed earlier, for example by
Vickrey [77], Clarke [20] and Groves [35] as we saw in Section 2.2. The elegant charac-
terization of truthfulness via the sub-gradients of the utility functions (Theorem 2.2)
is due to Rochet [70, 71]. One of the first solid attempts by economists to generalize
Myerson’s results to multiple goods when valuations are additive was by McAfee and
McMillan [56]. They provided the following condition (see Equation (46) in [56]) on
the density f of the buyer’s prior joint distribution over the m-item values (which in
general don’t need to be independent)

(m+ 1)f(x) + x · ∇f(x) ≥ 0, (2.17)

and proved that this condition is sufficient for deterministic pricing rules to be optimal
(among all feasible auctions, including lotteries). However, this was later shown to
be erroneous by [75] and [53], independently. Notice that for the special case of a
single good this has a strong connection with the standard singe-dimensional regularity
condition of Definition 2.6, since for m = 1 we get that f(x)

(
x− 1−F (x)

f(x)

)
is increasing,

thus ensuring the single-crossing property of the virtual valuation function (see also
the discussion in [53, Sect. 2]).

In particular, this initiated a long stream of results trying to demonstrate the
limitations of determinism in general, by providing counterexamples where lotteries are
necessary for optimality, under various single-buyer settings: Thanassoulis [75] (unit-
demand valuations, correlated distributions), Manelli and Vincent [53] (two correlated
items, supported over I2), Pycia [67] (two correlated items with a finite support of
size 2), Pavlov [66, Example 3(ii)] (two uniformly i.i.d. items over [c, c + 1] where
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c ∈ (0, 0.077)), Hart and Reny [41] (two correlated items with a support of size 4;
two i.i.d. items with a support of size 6) and Daskalakis et al. [25] (two non-identical
but independent exponentially distributed items over [0,∞)). The exposition of [41] is
particularly straightforward and provides a clear intuition on the truthfulness aspects of
the setting, something which is critical in auction design. Daskalakis et al. [25] present
also another counterexample, involving two specific, non-identical beta distributions
over [0, 1); it is of great interest, since it turns out that the optimal auction has to
use a continuum of randomized options, that is, the seller has to offer to the buyer
infinitely many lotteries.

This is related to the notion of menu-size complexity, introduced earlier by Hart
and Nisan [39] in order to quantify the degree of an auction’s simplicity in terms of
how many different alternatives are offered to the buyer. This structural approach
allowed them to prove some powerful results in a very clear way: they give (correlated)
distribution examples where the optimal revenue increases arbitrarily with the size of
the menu and, in particular, deduce that by bounding the size of the menu no constant
fraction of the optimal revenue can be guaranteed. Also, since deterministic auctions
can have at most exponential (with respect to the number of items m) menu sizes,
this is another demonstration of their sub-optimality. If we restrict our attention to
bounded domains of the form [1, H]m though, they can show that just polylogarithmic
(for m = 2) or polynomial (for m > 2) size menus are enough to achieve arbitrary
approximations to the optimal revenue. This last observation links their results to the
PTAS8 of Daskalakis and Weinberg [22] where the key element of their construction is
essentially the proof that small (polynomial) menu sizes are enough to provide good
approximations. Hart and Nisan [39] also answer an open question from the standard-
reference paper of Briest et al. [8] about unit-demand settings, showing that for the case
of two items the gap between the performance of deterministic and optimal auctions
is bounded9, achieved through proving that the two models (that is, unit-demand and
additive valuation) can differ at most exponentially.

Manelli and Vincent [53] were the first to give an exactly optimal solution in a
multidimensional (single-buyer) additive setting, about 25 years after Myerson’s paper.
They provided sufficient conditions for optimality of deterministic auctions and also
some necessary ones, but only within the class of price schedules, and not in the general
class of IC and IR auctions (which includes lotteries). From this, for example, they can
show that the optimal deterministic auction for m uniformly distributed goods must
set a price of m

m+1 for the 1-item bundles. All these conditions are topological in nature,
in the form of functional inequalities over abstract partitions of the allocation space,
and admittedly difficult to interpret. However, they were able to instantiate them for

8Polynomial Time Approximation Scheme [76]: it means that for every ε > 0 there exists an
algorithm that computes a solution which is within a (multiplicative) factor of (1 + ε) from the
optimal one, having polynomial running time (where ε is considered a constant).

9It was already known by [8] that this is not the case for unit-demand settings with more items.
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two and three items into specific requirements for the probability prior and, although
still involved, they showed that they are satisfied by the uniform distribution, thus
establishing exact optimality.

Their methodology is inspired by some earlier work of theirs [52] and one can also
see some underlying hints to duality, although not in the straightforward way of later
works [25, 31]. Throughout their exposition, Manelli and Vincent [53] assume that
the joint distribution has a continuously differentiable density f in the unit hypercube
Im and that f(x) + xj

∂f(x)
∂xj

≥ 0 for all items j, which can be translated essentially
to xif(x) being (weakly) increasing with respect to all coordinates. Since for the
most part they deal with independent valuations, f is a product distribution and so
the above conditions are translated to each fj being continuously differentiable in I

and xfj(x) being increasing. This is stronger than the McAfee and McMillan [56]
assumption (2.17), which in turn, for just m = 1 item is the regularity condition of
Definition 2.6. When they instantiate their method for two items they require the
extra condition that xf ′j(x)

fj(x) is increasing, which they admit it is unusual and seems to
arise due to the “multidimensional character of the problem”. Their analysis for three
items is done only for the uniform distribution specifically, because the optimality
conditions become even more difficult to manipulate and their verification is done via
direct computation methods for finding the best price schedule and then showing that
these prices also satisfy the sufficient conditions.

In follow-up work, Manelli and Vincent [54] perform a complete topological anal-
ysis of the revenue optimization problem. They approach it as maximizing a linear
functional over a (convex) functional space of feasible utility functions. By Bauer’s
Maximum Principle (see e.g. [2, Chapter 7]) this means that an optimal mechanism is
an extreme point of this space. However, it is not true that every extreme point is a
maximizer and in fact this is the very difficulty of the problem itself: the richness of
these points and the challenge to discriminate maximizers from general extreme points.
They describe the extreme points of the feasibility space giving algebraic conditions
and also give sufficient conditions for a mechanism to be an extreme point. However,
minimizers are also extreme points. Up to this stage their analysis does not take into
consideration the valuation priors at all, so it is valid for arbitrary joint distributions.
Next they assume independent items, introduce a notion of domination (with respect
to the induced revenue) and show that every undominated extreme point mechanism
is optimal for some product distribution (however, as Hart and Reny [41] point out,
there is an error in the proof, in particular the assumption that the set of product
distributions (named G in their proof of Theorem 9) is convex).

Li and Yao [48] show that selling m goods separately is O(logm)–approximate
and furthermore, if the items have identical distributions, full-bundling has constant
approximation ratio. This is an improvement upon the work of Hart and Nisan [38]
that gave O(log2m) and U(logm) bounds, respectively. Li and Yao [48] also show
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that their bounds are tight up to constant factors. Their results require no regularity
assumptions over the distributions, just independence, which is also the case in the
work of Hart and Nisan [38].

For the special case of two independent items Hart and Nisan [38] have proved an
approximation ratio of 2 for selling separately, which goes down to (1 + e)/e ≈ 1.368
when the items are identical. They don’t have a matching lower bound for the latter,
and the best separation they present is of a factor of 1.278. In fact this is taken with
respect to the full-bundle auction, since for the particular example they use (two equal-
revenue i.i.d. goods) it can be shown that bundling is optimal. They also give a general
sufficient condition for full-bundling optimality for two-item i.i.d. settings, namely

f ′(x) + 3
2f(x) ≤ 0

for all values x ≥ α after some positive point α, and f(x) = 0 before that. This
condition is satisfied by the ER distribution. However, a calculation shows that power-
law distributions f(x) = 1−c

xc
, x ∈ [1,∞) where c > 2, which are also regular but

not MHR, fail to satisfy this condition. They also show that if distributions are not
independent then full-bundling’s approximation ratio goes up to linear m and this is
tight. They can, though, extend the 2-approximation result for two independent items
to the case of n bidders. Finally, they provide an extensive discussion about the fact
that by the law of large numbers, if we let m→∞ in the i.i.d. setting, then the revenue
of the full-bundle auction approaches the optimal one (that is, m times the expectation
of the distribution). However, as they also argue, this gives no specific approximation
guarantees for fixed values of m. In particular, they can construct examples, no matter
how large m is, where full-bundling is less than 0.57 of the revenue of the auction that
sells items separately.

Pavlov [66] focuses his study in two-good environments for which the joint distribu-
tion also has to satisfy the regularity condition (2.17). He studies both the unit-demand
and additive settings and gives some properties that the optimal auction must satisfy,
which are of a structural nature, saying e.g. that at least one of the goods has to be sold
deterministically with probability 1 (unless none of the items is sold). He applies this
for uniform distributions over unit-length intervals of the form [c, c+1], c ≥ 0, and after
properly manipulating these characterizations in an algebraic way, he shows that the
optimal auction for two-items is deterministic, except for the case where c ∈ (0, 0.077),
and gives a complete, closed-form description of it.

Hart and Reny [41] show how optimal revenue in multi-good settings is not mono-
tonic with respect to the player’s valuations. Another very elegant contribution is
that they propose a framework to study optimal auctions that avoids the technical
complications of the fact that, in general, utility functions need not to be everywhere
differentiable (but only almost everywhere) since they are convex. They do that by
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focusing on seller-favourable mechanisms which at every point of non-differentiability
just pick the value of the subgradient (i.e. allocation, see Theorem 2.2) that favours
the seller (that is, has the highest price). This is done by deploying directional deriva-
tives (that exist everywhere), and taking the best direction for the seller. They show
that this is a well-defined process which is without loss for the revenue-maximization
objective.

In very recent, exciting work, Babaioff et al. [6] show that for arbitrary indepen-
dent distributions, the best of the two among selling separately and selling in a full
bundle, is always a constant approximation to the optimal, namely 7.5 (this was im-
proved to 6 in a later version of the paper). Their approach is based on the core-tail
separation technique introduced by Li and Yao [48]. They also extend their technique
to multiple-buyer settings where they get a O(logm)–approximation for the auction
that sells separately. This is asymptotically tight (due to a lower bound by Hart and
Nisan [38]). In fact, this was the first non-trivial positive result with an approximation
ratio for general multi-bidder settings. They introduce the notion of a partition mech-
anism which first groups the items in different bundles and then sells these bundles
separately, as single items. This is a generalization of both selling separately and in
a full bundle. They show that when many bidders are involved, the optimal partition
mechanism may be Ω(logm) away from the optimal, but also Ω(logm) better than the
best of selling independently and in a full bundle. Finally, with respect to our stan-
dard single-buyer setting but under correlated items, they show that selling separately
is Θ(logm)-approximate to the best partition mechanism. In fact, there is a Ω(logm)
separation between the optimal among selling separately and in a full bundle, and the
best partition mechanism.

Menicucci et al. [57] show that for two i.i.d. goods over an interval [a, b], if the
prior distribution satisfies the regularity condition (2.17) of [56, 66], and also exists a
constant c > 1 such that

xf(x) ≥ c and F

(
a+ b

2

)
≤ c− 1,

then full-bundling is optimal. A more simple, sufficient condition is for the density
function f to be increasing and satisfy af(a) ≥ 3/2. For example, the uniform dis-
tribution over intervals [a, a + 1] with a ≥ 3/2 satisfies this condition. However, this
is already known by the results of Pavlov [66]. They also provide weaker conditions
under which full-bundling is optimal among deterministic price schedules.

Multiple buyers For multiple bidders and independent goods Yao [80] approaches
the problem via reducing it to the single-item case, introducing what he calls Best-
Guess reduction. He makes no regularity assumptions on the distributions, and shows
the existence of a constant-approximate deterministic auction, generalizing thus the
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results of Babaioff et al. [6]. If, furthermore, the players are independent, then the
optimal revenue achieved in DSIC is within a constant factor of the BIC one. Finally,
if all item values are also identically distributed, then he expresses the optimal revenue
in an asymptotic closed form, and describes an auction called 2nd-Price Bundling that
achieves this.

Duality A similar, in principle, approach to ours, proposing in a clear way a duality
framework for multidimensional revenue maximization has been independently devel-
oped by Daskalakis et al. [25], and so a detailed coverage of their work is in order.
They study the problem in the case of a single buyer and independent goods. They
formulate a measure-theoretic complementarity-like sufficient condition for optimality.
Since this condition is rather abstract and difficult to satisfy, they provide a tool which
involves the stochastic dominance of certain measures and uses Strassen’s theorem [49],
and which is capable of showing the existence of a critical measure γ∗ that is sufficient
for complementarity. Using this, they were also able to provide a measure-theoretic
condition that is sufficient for the optimality of the deterministic full-bundling auction.
By focusing in the special case of only two items, they manage to manipulate these
conditions and transform them into more simple, analytic in nature characterizations.

By deploying these tools they achieved to explicitly describe the optimal auction
for selling two (not necessarily identical) exponentially distributed items, which turns
out to be either deterministic or randomized, depending on the ratio between the pa-
rameters of the exponential distributions (see Appendix A.4 for our analysis of this
auction). They also give closed-forms of the optimal auctions for two particular exam-
ples: one for two goods following power-law distributions with parameters c1 = 6 and
c2 = 7, for which they show that full-bundling is optimal and numerically compute the
optimal bundle price p∗ ≈ 0.357; and another for two goods from beta distributions
f1(x) = x2(1−x)2

B(3,3) and f2(x) = x2(1−x)2

B(3,4) , x ∈ [0, 1), where the optimal auction is random-
ized. Notice that these two particular beta distributions are both regular, but f2 is not
MHR (see Definition 2.7). The exponential distributions, as we saw in Section 2.3.2,
are MHR (thus also regular). The power-law distributions are also regular, but not
MHR (in fact their monotone hazard rate is strictly decreasing).

Finally, an overview of the assumptions that Daskalakis et al. [25] impose on the
probability distributions for the values of the goods: they are defined in semi-open
intervals [d−, d+), where d− ≥ 0 and d+ possibly infinite, and they need to have a
continuously differentiable density f that decreases more steeply than 1/x2, or more
generally in the case of bounded supports, limx→d+ x2f(x) = 0; also f has to vanish on
the left point of the interval, that is d−f(d−) = 0.

Algorithmic approximations By this term we mean results where efficient algo-
rithms for finding an approximately optimal mechanism are given, instead of results
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proving good approximation ratios for particular (simple, with closed form descrip-
tions) mechanisms (like e.g. in the work of Hart and Nisan [38] mentioned above).
The two approaches may seem equivalent from an algorithmic/procedural perspective,
however there is an essential difference: the first one does not necessarily provide a
solid description of the particular mechanism that achieves the approximately optimal
performance. On this, see also our discussion on conceptual complexity [40] in Item 7
of Chapter 7.

Daskalakis and Weinberg [22, 21] give a PTAS (over max{n,m}) that locates a
mechanism which is within an additive ε, in the case of bounded distributions, or
multiplicative (1 − ε) factor, for the case of unbounded MHR ones, from the optimal
revenue. They assume either a constant number of bidders that each one of them
has identical values for the items (the distributions need not to be identical across
bidders, but just independent), called the item-symmetric setting, or the number of
items fixed and identical distributions across the bidders, which however can have
arbitrary correlation among items, called the bidder-symmetric setting. They work in
the unit interval and claim that this is w.l.o.g. for any general bounded set. One key
feature of their work is that, if the distribution support is bounded, or unbounded
but satisfies the MHR condition, then they provide a technique that can truncate and
discretize these supports while still achieving nearly optimal ε-BIC mechanisms. This,
in turn, can then be reduced to a nearly optimal BIC mechanism. This approach plays
also a critical role in some other approximation results of Cai et al. [11] and Cai et al.
[13] that study the explicit setting10 and that have polynomial running-times on the
size of the support in general: they allow them to run efficiently also for continuous
supports, in the special case of item-symmetric distributions (see e.g. [11, Section 3.3]).

Cai and Daskalakis [9] essentially study the same approach for unit-demand, single-
bidder settings; a combined review of these two works can be found in [12]. Cai and
Huang [10], like Daskalakis and Weinberg [22], give a PTAS, however instead of an
LP-based approach they provide some structural probabilistic properties and run a
modified, threshold-like VCG mechanism for most items and leave the remaining (con-
stant number) to be handled by known approximate results like the ones of Daskalakis
and Weinberg [22]. In earlier works, Chawla et al. [15] and Alaei [1] had provided
(inferior) constant factor approximations for unit-demand bidders or general matroid
constraints. The former paper deploys sequential posted pricing and uses a reduc-
tion to a single-dimensional optimal revenue problem, while the latter uses convex-

10The term has been used in [25] to state the difference between models where the values are given
explicitly in the input of the algorithm, i.e. in the form of a list holding every point in the support and
the corresponding probability, and models where this is given implicitly by just providing the marginal
distribution for every item. The latter is the approach followed in the present thesis. As Daskalakis
et al. [25] argue, the explicit model is clearly not the natural choice when we want to study continuous
valuation priors and, settings in general that have some kind of structure that allows for more succinct
representations than exhaustive listing all values. Notice also the exponential size requirement in the
input of the mechanism under the explicit model.
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programming relaxations. LP relaxations and rounding schemes have been also used
by Bhattacharya et al. [7] to give constant approximations deploying sequential posted
pricing, but without the unit-demand constraint. Correlation is allowed but MHR is
required. If the MHR condition is relaxed, then they can guarantee logarithmic ap-
proximations. If the support of the priors of each bidder is discrete, they can show a
4-approximation by utilizing a sequential all-pay mechanism.

Unit-demand valuations Although the main topic of this thesis is on additive val-
uations, we briefly discuss some important results in the unit-demand front. In the
economics community, Thanassoulis [75] was the first to clearly study the multidimen-
sional revenue maximization problem specifically for unit-demand bidders, investigat-
ing whether a previous result of Riley and Zeckhauser [68] about deterministic optimal-
ity still holds for multiple goods. More recently, Pavlov [66] studied the unit-demand
setting for two items with a uniform joint distribution over a triangular domain, giving
exact descriptions of the optimal auction. In doing so, he showed something more
general: the optimal auction must be piecewise linear, with 2 or 3 different regions
(excluding the zero, non-allocation region). Notice that these results show that the
optimal auction (for a uniform distribution) over the unit square I2 is deterministic,
while the one over the triangle with edge length 2 has a randomized component. Ele-
ments of this piece-wise linearity can be found also in the topological characterizations
of Manelli and Vincent [54] (for additive valuations).

Computational complexity Daskalakis et al. [26] show that even for a single buyer
and independent (but not identical) valuations with a finite support of size 2, it is #P-
hard to compute exactly the allocation function of an optimal auction (see Corollary 1
in their text, which is in fact a special case of the more general Theorem 1). Therefore
approximation is necessary in non-i.i.d. settings. However this does not exclude the
possibility of a PTAS. Recall that Cai and Huang [10] and Daskalakis and Weinberg
[22] have already given PTAS for the i.i.d. setting. The general idea of the techniques
of Daskalakis et al. [26] is the relaxation of an LP describing the problem, the dual of
which can then be interpreted as a flow problem. This hardness result strengthens even
more the belief of the researchers working in the field that closed-form descriptions of
optimal multidimensional mechanisms are, in general, not feasible.

Price Schedules We must, once more, make clear that the problem we are deal-
ing with here involves optimization within the general space of truthful, IR auctions.
There is a natural restriction of the problem when optimization is done only among the
space of deterministic mechanism. Notable work in the economics community includes
that of Armstrong [4]. Regarding computational complexity, for the unit-demand ver-
sion of the problem, known as item pricing, Chen et al. [17] show that although it is
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polynomial time tractable for distributions of support of size 2, the decision version
of the problem is NP-complete for larger supports, and remains NP-complete even for
identical distributions.

Experimental results Chu et al. [19] perform numerical analysis over various, non-
identical distributions for the single-buyer multiple-goods settings, wanting to see how
well pricing according to the cardinality of the bundle performs when compared to the
optimal price schedule (which in general can be exponential in size of its description) or
to pricing the full bundle. Their experimental results are generally positive, and when
the number of items increases or the marginal costs decrease, then the performance of
their selling mechanism becomes even better.
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Chapter 3

Duality

In this chapter we present our duality-theory framework for optimal mechanism design
with additive valuations. It has two key characteristics. First, its generality: it can
be formulated for any number of buyers and goods, and any kind of correlated joint
probability prior over the bidders’ type space, under only mild continuity assumptions.
And secondly, its simplicity: the formulation resembles traditional linear programming
(LP) duality, and one can readily plug-in the distributional priors and get closed form
expressions for the objectives and the constraints. Furthermore, tools analogous to
LP weak duality and complementarity can be shown to hold. Of course, here the
optimization programs are no more discrete and finite, but instead involve continuous
functions and their derivatives, and thus the results from classical LP duality don’t
come for free. As a matter of fact, the entire chapter can be seen as an effort to
rigorously generalize the spirit and power of the theory of LP duality to such functional
settings, while maintaining its main attractive features.

In Section 3.1 we present the formulation of the primal and dual programs, and dis-
cuss how these are linked to the revenue maximization problem. In Section 3.2 the tools
of weak duality and (approximate) complementarity are stated and proven. Section 3.3
is dedicated to discussing some subtle points, like the importance and the effect of the
initial relaxation of the convexity requirement when forming the primal program, as
well as further relaxations and the application of the framework in unbounded domains.

3.1 The Formulation

In this chapter we will use our notation from Section 2.3: There are n bidders with
additive valuations and m items, xi,j ∈ Di,j = [Li,j, Hi,j] denoting the value of player
i for good j. The type profile x is drawn from a joint probability distribution F over
D = ∏n

i=1
∏m
j=1Di,j. The only assumption we will make for the distribution is that it

has a density function f which is continuously differentiable1.
1In fact, weaker assumptions like Lipschitz continuity or even just absolute continuity with respect

to all its components would be enough for our purposes: we just need some minimal condition in order
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3.1.1 Primal

Following the exposition in Section 2.3.1, finding the revenue maximizing mecha-
nism is equivalent to maximizing the expectation (under distribution F ) of the sum∑n
i=1∇ui(x)·xi−ui(x) over all feasible utility functions ui : D −→ R+. Feasibility here

means that these functions must be convex and that their partial derivatives must be in
[0, 1], since they correspond to allocation probabilities. These requirements come from
the fact that we restrict our search only within truthful mechanisms (see Theorem 2.2).
Recall though that this is without loss to the revenue maximization objective, due
to the Revelation Principle (Theorem 2.1)). Then, the optimal auction M = (a,p)
can be recovered easily by the utility functions: the allocation rule is simply given by
ai,j(x) = ∂ui(x)

∂xi,j
and the payment extracted from player i is pi(x) = ∇ui(x) ·xi− ui(x).

We will relax this original problem by replacing the convexity constraint by the
much milder constraint of absolute continuity—absolute continuity allows us to express
functions as integrals of their derivatives2. We can restate this as follows: truthfulness
in general imposes two conditions on the solution of allocating the items to bidders
(see Theorem 2.2); the first condition is that the utility is convex; the second one is
that the allocations must be gradients of the utility.

It seems that in many interesting cases, including the important Myersonian case
of one item and regular distributions (Definition 2.6), when we optimize revenue the
convexity constraint is essentially redundant: dropping it has no effect on the actual
optimal value of the objective. However, there are cases in which this is not true
and convexity is essential. We give an in-depth discussion of this topic, along with
counterexamples, in Section 3.3.1. Notice though that in any case, the optimal value
of the relaxed problem will always provide an upper bound on the optimal revenue,
which is very important since the critical Weak Duality lemmas of Section 3.2 will be
valid for both problems, regardless of whether the solution is convex or not.

So, we are going to refer to the following optimization problem as our primal pro-
gram:

to guarantee that basic integration operations can be performed. In particular, these are integration by
parts and the (second) fundamental theorem of calculus. For more details on how all these conditions
relate to each other and why they are enough, we refer to any serious introductory text in Measure
Theory, e.g. these of Tao [74, Section 1.6] or Stein and Shakarchi [73, Section 3.2].

2Every convex function is Lipschitz continuous and thus also absolutely continuous with respect to
all its variables (for a proof of this and a more thorough discussion see Rockafellar [72, Chapter 10]).
See also Footnote 1 above.
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maximize
n∑
i=1

∫
D
∇ui(x) · xi − ui(x) dF (x) (3.1)

over the space of absolutely continuous3 functions ui : D −→ R+ having the
properties

n∑
i=1

∂ui(x)
∂xi,j

≤ 1 (zj(x))

∂ui(x)
∂xi,j

≥ 0 (si,j(x))

for all i ∈ [n], j ∈ [m] and a.e. x ∈ D.

We have appropriately labelled the constraints on the partial derivatives in order to
use them in the duality formulation of the next section. Also, maintaining the spirit
of traditional LP theory, we will feel free to refer to the ui’s of this program as the
primal variables. A feasible solution is a set of variables ui that satisfy all the necessary
constraints of the program. We will refer to the value of the objective function (3.1) of
the program evaluated on a specific feasible solution as the value of that solution. If a
particular feasible solution is also a maximizer of the value of the program, it will be
called optimal.

3.1.2 Dual

Motivated by traditional LP duality theory, we develop a duality framework that can
be applied to the problem of designing auctions with optimal expected revenue. By
interpreting the derivatives as differences, we can view the primal Program (3.1) as an
(infinite) linear program and we can find its dual. The variables of the primal linear
program are the values of the functions ui(x). The labels (zj(x)) and (si,j(x)) on the
constraints of Program (3.1) are the analogue of the dual variables of a linear program.

To find its dual program, we first rewrite the primal objective function in terms of
the ui’s instead of their derivatives. In particular, by integration by parts we have

∫
D

∂ui(x)
∂xi,j

xi,jf(x) dx =
∫
D−i,j

[ui(x)xi,jf(x)]xi,j=Hi,jxi,j=Li,j dx−i,j −
∫
D
ui(x)∂(xi,jf(x))

∂xi,j
dx

=
∫
D−i,j

[ui(x)xi,jf(x)]xi,j=Hi,jxi,j=Li,j dx−i,j −
∫
D
ui(x)f(x) dx−

∫
D
ui(x)xi,j

∂f(x)
∂xi,j

dx

3By this, we mean that every function ui is absolutely continuous with respect to all its components,
i.e. when viewed as a function ui( · ,x−i,j) : Di,j −→ R+, for all i ∈ [n], j ∈ [m] and fixed
x−i,j ∈ D−i,j . In fact, absolute continuity is needed only for the variables in xi, and simple continuity
(or just integrability) for the remaining coordinates is enough. Finally, notice that given the constraints
of the primal program on the partial derivatives, this means that ui is not just absolutely continuous
with respect to its i-th components, but also m-Lipschitz continuous. See also Footnote 1.
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to rewrite the objective of the primal program as

n∑
i=1

∫
D

(∇ui(x) · x− ui(x)) dF (x) =

n∑
i=1

m∑
j=1

∫
D−i,j

Hi,j ui(Hi,j,x−i,j) f(Hi,j,x−i,j) dx−i,j

−
n∑
i=1

m∑
j=1

∫
D−i,j

Li,j ui(Li,j,x−i,j) f(Li,j,x−i,j) dx−i,j

−
n∑
i=1

∫
D
ui(x) ((m+ 1)f(x) + xi · ∇if(x)) dx. (3.2)

Notice that some of the above expressions make sense only for bounded domains
(i.e., when Hi,j is not infinite), but it is possible to extend the duality framework to un-
bounded domains, by carefully replacing these expressions with their limits when they
exist or by appropriately truncating the probability distributions. For completeness
and future reference we provide a treatment of the general case in Section 3.3.2.

To find the dual program, we have to take extra care on the boundaries of the
domain, since the derivatives correspond to differences from which one term is missing
(the one that corresponds to the variables outside the domain). Inside the domain, the
dual constraint that corresponds to the primal variable ui(x) is

m∑
j=1

∂zj(x)
∂xi,j

≤ (m+ 1)f(x) + xi · ∇if(x).

So, the dual program that we propose is

minimize
m∑
j=1

∫
D
zj(x) dx (3.3)

over the space of absolutely continuous functions zj, si,j : D −→ R+ having the
properties

m∑
j=1

(
∂zj(x)
∂xi,j

− ∂si,j(x)
∂xi,j

)
≤ (m+ 1)f(x) + xi · ∇if(x) (ui(x))

zj(Li,j,x−i,j)− si,j(Li,j,x−i,j) ≤ Li,jf(Li,j,x−i,j) (ui(Li,j,x−i,j))

zj(Hi,j,x−i,j)− si,j(Hi,j,x−i,j) ≥ Hi,jf(Hi,j,x−i,j) (ui(Hi,j,x−i,j))

for all i ∈ [n], j ∈ [m] and a.e. x ∈ D.

Again, we have labelled the constraints of this dual program so that they match ap-
propriately to the corresponding primal variables of (3.1).

The above intuitive derivation of this dual is used only for illustration and for ex-
plaining how we came up with it. None of the results relies on the actual way of
coming up with the dual program. However, the derivation is useful for intuition and
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for suggesting traditional linear programming machinery for these infinite systems; for
example, although we don’t directly use any results from the theory of linear program-
ming duality, we are motivated by it to prove similar connections between our primal
and dual programs.

One can interpret this dual as follows: For the sake of clarity, assume a single-bidder
and drop the si,j constraints; we seek m functions zj defined inside the hyperrectangle
[L1, H1]× · · · × [Lm, Hm] such that

• in the j-th direction, function zj starts at value (at most) Ljf(Lj,x−j) and ends
at value (at least) Hjf(Hj,x−j); this must hold for all x−j.

• at every point of the domain, the sum of the derivatives of functions zj cannot
exceed (m+ 1)f(x) + x · ∇f(x).

• the sum of the integrals of these functions is minimized.

A visual interpretation of this for two and three uniformly distributed goods can be
seen in Figure 4.1.

Let us also mention parenthetically that one can derive Myerson’s results by select-
ing as variables not the utilities ui(x), but their derivatives (see [58]). In fact, since
the allocation constraints involve exactly the derivatives, this is the natural choice of
primal variables. Unfortunately though, such an approach does not seem to work for
more than one item because the derivatives are not independent functions. If we treat
them as independent, we lose the power of the gradient constraint.

3.2 Weak Duality and Complementarity

The way that we derived the dual system does not yet provide any rigorous connection
with the original primal system. We now prove that this is indeed a weak dual, in the
sense that the value of the dual minimization program cannot be less than the value
of the primal program:

Lemma 3.1 (Weak Duality). The value of every feasible solution of the primal
Program (3.1) does not exceed the value of any feasible solution of the dual Pro-
gram (3.3).

Proof. The proof is essentially a straightforward adaptation of the proof of traditional
weak duality for finite linear programs. Take a pair of feasible solutions for the primal
and the dual programs and consider the difference between the dual objective (3.3) and
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the primal objective (3.2):

m∑
j=1

∫
D
zj(x) dx +

∑
i∈[n]

∫
D
ui(x) ((m+ 1)f(x) + xi · ∇if(x)) dx

−
n∑
i=1

m∑
j=1

∫
D−i,j

Hi,j ui(Hi,j,x−i,j) f(Hi,j,x−i,j) dx−i,j

+
n∑
i=1

m∑
j=1

∫
D−i,j

Li,j ui(Li,j,x−i,j) f(Li,j,x−i,j) dx−i,j

Using the constraints of the programs, the first two terms of this expression can be
bounded from below by

m∑
j=1

∫
D
zj(x)

n∑
i=1

∂ui(x)
∂xi,j

dx−
n∑
i=1

m∑
j=1

∫
D
si,j(x)

n∑
i=1

∂ui(x)
∂xi,j

dx

+
n∑
i=1

∫
D
ui(x)

 m∑
j=1

∂zj(x)
∂xi,j

−
m∑
j=1

∂si,j(x)
∂xi,j

 dx

which equals
n∑
i=1

m∑
j=1

∫
D

∂ [(zj(x)− si,j(x))ui(x)]
∂xi,j

dx.

Similarly, the other two terms of the expression can be bounded from below by

−
n∑
i=1

m∑
j=1

∫
D−i,j

ui(Hi,j,x−i,j) (zj(Hi,j,x−i,j)− si,j(Hi,j,x−i,j)) dx−i,j

+
n∑
i=1

m∑
j=1

∫
D−i,j

ui(Li,j,x−i,j) (zj(Li,j,x−i,j)− si,j(Li,j,x−i,j)) dx−i,j

and they cancel out the first two terms. Bringing everything together, the difference
of the dual and primal objectives are bounded from below by zero.

One can use weak duality to show optimality, in the same way that we do that in
traditional LP settings: it suffices to have a pair of feasible primal-dual solutions that
have the same value. However powerful and straightforward this seems, sometimes
computing the value of a primal or dual solution might not be easy at all or the
optimal solutions may not even be expressible in a closed form. For example, that is
the situation for the case of uniform distributions as we’ll see in Chapter 3. Thus, it is
essential to develop additional techniques that can be utilized in a more indirect and
less explicitly constructive way to prove optimality: a useful tool towards that end is
through complementarity (see e.g. [76]). In fact, we will prove a more powerful version
than a simple generalization of traditional LP complementarity to continuous functions,
which will allow us later to discretize the domain and consider approximate solutions
as well. Specifically, instead of requiring the product of primal and corresponding dual
constraints to be exactly zero, we generalize it to be bounded above by a constant:
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Lemma 3.2 (Complementarity). Suppose that ui(x) is a primal feasible solution
and zj(x), si,j(x) is a dual feasible solution. Fix some parameter ε ≥ 0. If the
following complementarity constraints hold for all i ∈ [n], j ∈ [m] and a.e. x ∈ D,

ui(x) ·
(m+ 1)f(x) + xi · ∇if(x)−

m∑
j=1

∂zj(x)
∂xi,j

+
m∑
j=1

∂si,j(x)
∂xi,j

 ≤ εf(x)

ui(Li,j,x−i,j) · (Li,jf(Li,j,x−i,j)− zj(Li,j,x−i,j) + si,j(Li,j,x−i,j)) ≤ εf(Li,j,x−i,j)

ui(Hi,j,x−i,j) · (zj(Hi,j,x−i,j)− si,j(Hi,j,x−i,j)−Hi,jf(Hi,j,x−i,j)) ≤ εf(Hi,j,x−i,j)

zj(x) ·
(

1−
n∑
i=1

∂ui(x)
∂xi,j

)
≤ εf(x),

then the primal and dual objective values differ by at most (n + m + 2nm)ε. In
particular, if the conditions are satisfied with ε = 0, both solutions are optimal.

A pair of primal-dual solutions that satisfies the conditions of the lemma for some ε > 0
will be called ε-complementary. If this happens with ε = 0, then they will be simply
called complementary.

Proof. We take the sum of all complementarity constraints and integrate in the domain:

n∑
i=1

∫
D
ui(x) ·

(m+ 1)f(x) + xi · ∇if(x)−
m∑
j=1

∂zj(x)
∂xi,j

+
m∑
j=1

∂si,j(x)
∂xi,j

 dx

+
n∑
i=1

m∑
j=1

∫
D−i,j

ui(Li,j,x−i,j) · (Li,jf(Li,j,x−i,j)− zj(Li,j,x−i,j) + si,j(Li,j,x−i,j)) dx−i,j

+
n∑
i=1

m∑
j=1

∫
D−i,j

ui(Hi,j,x−i,j)·(zj(Hi,j,x−i,j)− si,j(Hi,j,x−i,j)−Hi,jf(Hi,j,x−i,j)) dx−i,j

+
m∑
j=1

∫
D
zj(x) ·

(
1−

n∑
i=1

∂ui(x)
∂xi,j

)
dx ≤ (n+m+ 2nm)ε

It suffices to notice that, by using the same transformations that we used to prove the
Weak Duality Lemma 3.1, the left hand side is equal to the dual objective minus the
primal objective.

3.2.1 Discussion

The above tools now allow us to approach the problem of maximizing revenue in many
different ways:

1. Starting from a specific truthful auction, that is with a convex feasible solution to
the primal program, and then coming up with an explicit feasible dual solution

(a) whose value exactly matches the value of the primal solution; then, by weak
duality, this auction is optimal.
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(b) whose value is an α-approximation of the value of the primal solution; then,
by weak duality again, this auction is α-approximate. In particular, the
value of the dual solution is an upper bound to the optimal revenue achieved
by any auction, since the primal program is a relaxation to the original
revenue maximization problem (by having dropped convexity).

2. Starting from a specific truthful auction and then showing, possibly in a non-
constructive way, the existence of

(a) a feasible dual solution which is complementary to the primal; then this
auction is optimal.

(b) a family of feasible dual solutions, indexed by a real parameter ε > 0, which
is ε-complementary to the primal; then, taking the limit as ε → 0, proves
that again this auction is optimal. Notice that this approach would also
work for point (1b) above, by taking α→ 1.

3. Doing all the above for a feasible primal solution u which is however not convex.
This means, that we may have managed to solve, or approximate, the primal-dual
system, but this didn’t give rise to a feasible auction, due to our initial relaxation
of the primal program by dropping the convexity constraint. Then, we may be
able to get an actual feasible auction with good performance, by transforming the
primal solution u to a convex one u′ which is “close” to u. This “convexification”
process can be viewed as the analogue of rounding a relaxed solution in traditional
LP (see e.g. [76]).

All these techniques will be further demonstrated and used in the following chapters
of this thesis.

3.2.2 Further Relaxations

The dual Program (3.3) is indeed powerful and straightforward enough to readily give
us closed-form and manageable expressions for both the objective function and the con-
straints, for a wide range of distributional priors. However, further simplification would
admittedly be very useful, given especially the notorious difficulty of multidimensional
revenue optimization. Towards this direction, for all applications in the following chap-
ters of this thesis, we will further relax the primal Program (3.1) by dropping the lower
bound constraint on the derivatives, that is ∇ui(x) ≥ 0: effectively this means that the
si,j dual variables will not appear any more in the dual Program (3.3). Furthermore,
these applications will involve a single buyer, so the tools of our duality framework can
be simplified: the primal program becomes

maximize
∫
D
∇u(x) · x− u(x) dF (x) (3.4)
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over the space of absolutely continuous functions u : D −→ R+ with

∂u(x)
∂xj

≤ 1, (zj(x))

the dual

minimize
m∑
j=1

∫
D
zj(x) dx (3.5)

over the space of absolutely continuous functions zj : D −→ R+ having the properties

m∑
j=1

∂zj(x)
∂xi,j

≤ (m+ 1)f(x) + x · ∇f(x) (u(x))

zj(Lj,x−j) ≤ Li,jf(Lj,x−j) (u(Lj,x−j))

zj(Hj,x−j) ≥ Hjf(Hj,x−j), (u(Hj,x−j))

and finally the complementarity constraints are simplified to

Lemma 3.3 (Complementarity for a single bidder). Suppose that u(x), zj(x) is a
pair of feasible primal-dual solutions. Fix some parameter ε ≥ 0. If the following
complementarity constraints hold for all j ∈ [m] and a.e. x ∈ D,

u(x) ·
(m+ 1)f(x) + x · ∇f(x)−

m∑
j=1

∂zj(x)
∂xi,j

 ≤ εf(x)

u(Lj,x−j) · (Ljf(Lj,x−j)− zj(Lj,x−j)) ≤ εf(Li,j,x−j)

u(Hj,x−j) · (zj(Hj,x−j)−Hjf(Hj,x−j)) ≤ εf(Hj,x−j)

zj(x) ·
(

1− ∂u(x)
∂xj

)
≤ εf(x),

then the primal and dual objective values differ by at most (3m+ 1)ε. In particular, if
the conditions are satisfied with ε = 0, both solutions are optimal.

There provably exist cases where this relaxation comes with a loss to the optimiza-
tion objective, even for the simplest case of a single buyer and only one good for sale:
in Section 3.3.1 we explicitly give an example of a probability distribution over [0, 1]
for which the dual variable s1,1 is needed for strong duality. However, this distribution
is irregular (Definition 2.6)). As a matter of fact, all the specific examples we will
deal with from now on in this thesis will involve a single buyer (but still many items)
and independent distributions that demonstrate some forms of regularity, and it seems
that this is enough to cause no loss under the relaxation of the positive derivatives
constraint. We must though point out here, that we believe this not to be the case
in general: we conjecture that the si,j’s are necessary, even for regular independent
distributions, if multiple-bidder settings are considered.
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In any case, we chose in this chapter to state our primal-dual framework in its most
general form and full power, involving many players, multiple items and arbitrarily cor-
related, possibly irregular, distributional priors, since we are confident that this might
prove useful in the future for attacking particular auction problems in such general
settings. Our priority though in this thesis, after the formulation of the framework,
would be to tackle standard, long standing open problems in the area of multidimen-
sional auctions, and this firstly requires dealing with the single-buyer case for which
the results and structural understanding have been very limited so far.

3.3 Fine Points

3.3.1 Convexity

In this section we discuss in greater depth the convexity constraint of the utility func-
tions. For clarity, we focus on the simple case of one bidder and a single item. For
that case we show that the convexity constraint is not necessary when item value is
drawn from a distribution that satisfies a regularity condition (see (3.6)). And in the
opposite direction, we exhibit an example of a distribution which does not satisfy the
regularity condition and for which the convexity constraint cannot be dropped without
affecting optimality. Later on, in Section 5.6.3 we will see another case where convexity
is necessary, this time for regular distributions but for two goods.

The primal program (3.1) (taking into consideration (3.2)) for this case is

max
u

u(H)Hf(H)− u(L)Lf(L)−
∫ H

L
u(x)(f(x) + (xf(x))′) dx

subject to

u′(x) ≤ 1 (z(x))

u′(x) ≥ 0 (s(x))

u′′(x) ≥ 0 (w(x))

u(x) ≥ 0.

Notice that there is no reason to include u(L) = 0 since this holds for the optimal
solution anyway; that is because if u(x) and u(x)− c are both feasible solutions and c
is a positive constant, then the corresponding objectives differ by cHf(H)− cLf(L)−∫H
L c(f(x) + (xf(x))′) dx = −c(H · F (H)− L · F (L)) < 0; this shows that the optimal
solution has u(x) = 0 for some x. See also the discussion about this in Section 3.3.4.

In our treatment of the subject in this thesis, we are dropping the constraints
labelled by the dual variables w(x) (convexity) and for the most part we will also
drop the ones corresponding to s(x) (nonnegative derivatives). We do that to keep the

40



primal and dual systems simple. More importantly, there is a strong reason for ignoring
the constraints corresponding to w(x) for multi-parameter domains: the convexity
constraints ∇2u(x) � 0 (that is, the Hessian of u being positive semidefinite, see [72])
are not linear in u (unlike the one-dimensional case, in which the constraint u′′(x) ≥ 0
is linear in u).

In the rest of this subsection, we investigate when the simplified systems are optimal.
We first give the dual of the above complete, non-relaxed primal4:

max z, s, w
∫ H

L
z(x) dx

subject to

z′(x)− s′(x) + w′′(x) ≥ f(x) + (xf(x))′ (u(x))

z(H)− s(H)− w(H) ≥ Hf(H) (u(H))

z(L)− s(L)− w(L) ≤ Lf(L) (u(L))

For a large class of distributions, the primal constraints with labels s(x) and w(x)
are non-essential; that is, if we set the dual variables s(x) and w(x) to zero, the optimal
solution is not affected. In particular, let us drop the s(x) and w(x) constraints, and
consider the distributions which satisfy

f(x) + (xf(x))′ ≥ 0. (3.6)

This condition is equivalent to F (x) + xf(x) − 1 = −(x(1 − F (x)))′ being (weakly)
increasing. Equivalently, the revenue curve R(x) = x(1 − F (x)), which gives the

4The dual of a linear program with derivatives can be computed in a straightforward way, in the
spirit of the derivation in Lemma 3.1. Instead of giving the rules, we simply give an illustrating
example. If the primal program with variable h(x) is

max
h

∫
D

h(x) γ(x) dx

subject to

α0(x)h(x) + α1(x)h′(x) + α2(x)h′′(x) ≤ β(x) (g(x))
h(x) ≥ 0,

its dual program with variable g(x) is

min
g

∫
D

g(x)β(x) dx

subject to

α0(x)g(x)− (α1(x)g(x))′ + (α2(x)g(x))′′ ≥ γ(x) (h(x))
g(x) ≥ 0.
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Figure 3.1: The probability distribution in Figure 3.1a is not regular and does not have concave
revenue curve, i.e. F (x) + xf(x)− 1 is not monotone. Its revenue curve is shown in Figure 3.1b. The
points x0, x2, and x3 are extrema; the point x1 has the same revenue with x3.

revenue for the deterministic mechanism that sells the item at (reserve) price x, is
not concave. This condition is very similar to the regularity condition of Myerson
[58] (Definition 2.6). When (3.6) holds, let x0 be such that F (x0) + x0f(x0) − 1 = 0
(x0 is effectively Myerson’s virtual price); the optimal primal and dual solutions are
u(x) = max {0, x− x0} and z(x) = max {0, F (x) + xf(x)− 1}, or equivalently

z(x) =

0 x ≤ x0

F (x) + xf(x)− 1 x ≥ x0.

It is straightforward to check that the above conditions satisfy the primal and dual
constraints and that they are complementary (that is, they satisfy Lemma 3.2 with
ε = 0); therefore they are optimal.

Let us now consider the case when condition (3.6) does not hold. Figures 3.1 and 3.2
show an example, for the probability distribution with cumulative function

F (x) = 1− (1− x)(1 + x(2.7x− 2.9))

over the unit interval I, for which the convexity constraint is necessary to get optimal
solutions. The probability distribution on the left of Figure 3.1 is not regular and its
revenue function R(x) = x(1 − F (x)) is not concave; equivalently, −R′(x) = F (x) +
xf(x)− 1 is not increasing. The revenue curve is shown on the right of the figure. The
points x0, x2, and x3 are extrema; the point x1 induces the same revenue with x3.

Figure 3.2 shows the optimal solutions. The optimal primal solution is u(x) =
max(0, x − x0) and corresponds to the deterministic selling mechanism with reserve
price x0. The optimal dual solution is z(x) which is equal to F (x) + xf(x)− 1 in the
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Figure 3.2: Figure 3.2a shows the optimal solutions for the distribution of Figure 3.1. Figure 3.2b
shows the optimal dual solution z1(x) and the corresponding optimal solution u(x), when we drop the
convexity constraint. Function z0(x) is the optimal dual solution when we drop both the convexity
constraint and the constraint u′(x) ≥ 0.

intervals [x0, x1] and [x3, 1]. The integral of −R′(x) in [x1, x3] is 0 (by the definition of
x1). The flattening of the −R′(x) curve in this interval is similar to the ironing process
of Myerson [58]. It follows that the integral of z(x) in the interval [x0, 1] is equal to the
integral of −R′(x), and therefore equal to x0(1− F (x0)), which is the optimal value.

This example illustrates that convexity is in some cases necessary to obtain optimal
primal and dual solutions. The right part of Figure 3.2 shows the optimal dual solution
z1(x) = max{0,−R′(x)} and the corresponding primal solution when we drop the
convexity constraint. To see that this is optimal, observe first that the dual solution
with z(x) = z1(x) and s(x) = max{0, R′(x)} is feasible (in fact, it satisfies the u(x)
and u(H) constraints tightly) and has optimal value

∫ 1

0
z(x) dx =

∫ x2

x0
−R′(x) dx+

∫ 1

x3
−R′(x) dx

= R(x0)−R(x2) +R(x3)−R(1)

= R(x0)−R(x2) +R(x3).

It is straightforward to verify that the primal solution u(x) has the same value, which
shows that it is optimal. However, the primal solution is not convex and, furthermore,
its value is strictly higher than the optimal one (because R(x3) > R(x2)). Therefore the
convexity constraint is in general essential to obtain the optimal solution. Recall though
that this is not the case for distributions that satisfy the regularity condition (3.6).

It is worth mentioning also that, if we drop both the convexity constraint as well
as condition u′(x) ≥ 0, we obtain an even worse (higher) dual solution. This is z0(x)
depicted in the right part of Figure 3.2. Observe that in this case, the value of z0(x)
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must be positive when −R′(x) = F (x) + xf(x) − 1 is strictly decreasing (since its
derivative must be negative and its value cannot become negative; there is no dual
variable s(x) = s1,1(x) to absorb this effect).

Finally, we believe it is very interesting to notice the interpretation of the dual
variable: z(x) is the negative derivative of the revenue curve.

3.3.2 Unbounded Domains

As we mentioned in the presentation of the duality framework in Section 3.1.2, for it
to make sense as-it-is we need the integrals in the basic transformation of the primal
revenue-maximization objective in expression (3.2) to be well-defined. This is definitely
the case when we have bounded domains, that is when the upper-boundary Hi,j of each
interval Di,j = [Li,j, Hi,j] is finite: all integrals in (3.2) are finite and the integration-
by-parts is valid. This of course includes the special case of uniform distributions which
is one of the main topics of this thesis (Chapter 4). We will now discuss how one can
still use this duality framework in cases where the domain D is not bounded.

For the sake of clarity, let us assume for the remaining of this section that we have
a single bidder and that item values are i.i.d. from some distribution F with density f
over an interval [L,H], L ≥ 0. First notice that, even for unbounded domains where
H =∞, the critical integral

∫
D−j

Hj u(Hj,x−j) f(Hj,x−j) dx−j = Hf(H)
∫

[L,H]m−1
u(H,x−j)

∏
l 6=j
f(xl) dx−j (3.7)

in (3.2) may still converge as H → ∞. In such a case, the duality framework from
Section 3.1.2 can be applied as it is: one just has to take the limit of H → ∞
wherever H appears, and in particular the Weak Duality Lemma 3.1 is still valid
if one replaces condition zj(H,x−j) ≥ Hf(H,x−j) by its natural limiting version of
limH→∞

(
zj(H,x−j)−Hf(H)∏l 6=j f(xl)

)
≥ 0. For example, a sufficient condition for

distributions with unbounded support to still induce bounded values in (3.7) is to have
finite expectation. This is a rather natural assumption to make and is standard for
example in the works of Myerson [58] and Krishna [47]. To see why (3.7) is finite,
it can be rewritten as Hf(H) · Ex−j∼Fm−1 [u(H,x−j)] and so, due to the derivatives
constraint ∇u(x) ≤ 1m, it is upper-bounded by

Hf(H)Ex−j∼Fm−1

H +
∑
l 6=j

xl

 = H2f(H) + (m− 1)Hf(H)E[X].

Now, if we take into consideration that any bounded-expectation distribution must
have f(x) = o(1/x2) since E[X] =

∫
xf(x) dx must converge, then it is easy to see that

this expression converges as H →∞, and in fact vanishes to zero.
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However, this might not be true for distributions with infinite expectation, for
example the equal revenue distribution (see Definition 2.8). In such a case, we can
follow a different path in order to use our duality framework. One can take the truncated
version of the distribution within a finite interval, that is consider the distribution
Fb(x) ≡ 1

F (b)F (x) over the interval [L, b] for any b ≥ L, apply the duality theory
framework in this finite case, and then study the behaviour as b→∞. As the following
Theorem 3.1 shows, this process will be without loss.

One last remark before stating the theorem is that, whenever one deals with a
specific case of the optimal revenue problem, he has to make sure that it is well defined,
i.e. that Rev(F ) < ∞ for the particular distributional priors F . This might seem
obvious at first, and is indeed a very subtle point to consider, but let us note here
that it is not the case for any probability distribution. For example, if we consider
i.i.d. valuations from the Pareto distribution f(x) = 1

2x
−3/2 , x ∈ [1,∞), the expected

(Myersonian) revenue by selling a single item at a price of t is t(1 − F (t)) = t(1 −
1 + t−1/2) = t1/2 which tends to infinity. Some simple sufficient conditions for bounded
optimal revenue in the i.i.d. case where the valuations come from a product distribution
Fm are the bounded expectation of the distribution F , since by IR one trivially gets
the bound Rev(Fm) ≤ mE[X], as well as the bounded revenue MRev(F ) for the
single-item case, since from the work of Hart and Nisan [38] we know that there exists
a constant c > 0 such that c

log2 m
Rev(Fm) ≤ SRev(Fm) , so we can get Rev(Fm) ≤

m log2 m
c

MRev(F ). The former condition is stronger. For example, the ER does not
have finite expectation but it does induce a finite Myersonian revenue of 1.

Theorem 3.1. Let F be a probability distribution over [a,∞), a ≥ 0, such that
Rev(Fm) < ∞. Then, if Fb denotes the truncation of F in [a, b], b ≥ a, and
limb→∞Rev(Fm

b ) converges, it must be that

lim
b→∞

Rev(Fm
b ) = Rev(Fm).

Proof. Let u be the utility function of an optimal selling mechanism when valuations are
drawn i.i.d. from F . The restriction of u in [a, b] is a valid utility function for the setting
where valuations are drawn i.i.d. from Fb and also we know that F (x) = F (b)Fb(x) for
all x ∈ [a, b]. Combining these we get:

Rev(Fm) =
∫

[a,∞)m
x · ∇u(x)− u(x) dFm(x)

=
∫

[a,b]m
x · ∇u(x)− u(x) dFm(x) +

∫
[a,∞)m\[a,b]m

x · ∇u(x)− u(x) dFm(x)

= Fm(b)
∫

[a,b]m
x · ∇u(x)− u(x) dFm

b (x) +
∫

[a,∞)m\[a,b]m
x · ∇u(x)− u(x) dFm(x)

≤ Fm(b)Rev(Fm
b ) +

∫
[a,∞)m\[a,b]m

x · ∇u(x)− u(x) dFm(x)

45



Next, for any b ≥ a, let ub be the utility function of an optimal selling mechanism
when valuations are drawn i.i.d. from Fb. This utility function can be extended to a
valid utility function ub over the entire interval [a,∞) in the following way

ub(x) = ub(γb(x)) + (x− γb(x)) · ∇ub(γb(x)), x ∈ [a,∞)m,

where γb(x) is the pointwise minimum of x and (b)m, that is the m-dimensional vector
whose j-th coordinate is min{xj, b}.

Since ub is a convex function with partial derivatives in [0, 1], so is the extended ub.
This means that we immediately get

Fm(b)Rev(Fm
b ) ≤ Rev(Fm).

Now the theorem follows from the facts that limb→∞ F
m(b) = 1 and

lim
b→∞

∫
[a,∞)m\[a,b]m

x · ∇u(x)− u(x) dFm(x) = 0.

The last equality is due to the fact that
∫

[a,∞)m x ·∇u(x)−u(x) dFm(x) is bounded by
assumption.

3.3.3 Bayes-Nash Truthfulness

As we mentioned in Section 2.2.1, our equilibrium notion of choice in this thesis would
be that of dominant strategies. As such, the default notion of truthfulness for our
mechanisms is that of DSIC (see Definition 2.4). We do that deliberately, due to
the robustness and transparency of such solutions. However, at the same time we do
understand that the standard approach of auction design in the economics literature is
to a priori focus on the weaker notion of BIC truthfulness (see e.g. [47]) instead. Thus
we want to let the reader know that, exactly because of the stronger solution concept
we have chosen, our duality framework can be readily adapted to Bayesian truthfulness
with minimal effort: just redefine the utility functions of the players to correspond to
their expected utility under their prior knowledge of the types of the other players:

Ui(xi) ≡ Ex−i∼F−i [ui(xi,x−i)] . (3.8)

Notice how now the utilities Ui are defined over the more restricted, player-specific
space Di instead of the entire domain D. The exposition and all proofs in this chapter
can then be carried out almost verbatim utilizing (3.8). Finally, we must mention that
this discussion is relevant only in multi-bidder settings: the definitions of DSIC and
BIC (see (2.2) and (2.3)) coincide when just a single buyer is involved.
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3.3.4 No-Positive Transfers

In addition to the standard assumptions of truthfulness (IC) and voluntary partici-
pation (IR) we presented in Section 2.2.3 there is another common, natural condition
known as No-Positive Transfers (NPT):

pi(x) ≥ 0 for all players i ∈ [n] and x ∈ D.

This expresses the desirable property that our mechanisms should only receive pay-
ments from the players and never give positive monetary transfers back to them. It
can be shown to be equivalent, at least when DSIC truthfulness is used or BIC with
product distributional priors (that is, independent items), to the condition

ui(0,x−i) = 0 (3.9)

which says that, every player who has zero desire for the items should actually get
exactly zero utility from the outcome of the auction5. The reason that we didn’t
explicitly include this property in the initial formulation of the revenue maximization
problem and thus in the constraints of the primal Program (3.1), is that it can be
shown that it comes for free along with the optimal solution; that is, for any auction
for which (3.9) does not hold, there is another auction with at least as good revenue that
does satisfy this exact equality. For a more detailed exposition on this we refer to Hart
and Nisan [40], but the important point the reader needs to keep from this discussion is
that, in the rest of our work, whenever we look into designing good revenue-maximizing
auctions, we can without loss focus on these which satisfy condition (3.9).

5Recall that the inequality ui(0,x−i) ≥ 0 holds anyway due to IR.
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Chapter 4

Uniform Distributions

This chapter is dedicated to demonstrating the power and usage of the duality frame-
work developed in Chapter 3, by applying it to the canonical open problem of revenue
maximization in the economics literature, that of a single bidder setting where item
values come i.i.d. from a uniform distribution over the real unit interval [0, 1]. We look
for the optimal selling mechanism that a multiple-good monopolist facing a buyer with
i.i.d. uniform bids should use in order to maximize his expected revenue. Notice that
we do not restrict our attention to just deterministic mechanisms (i.e. price schedules)
but we allow for general randomized ones (i.e. lotteries).

4.1 The Primal and Dual Programs

First we make the choice to relax the primal Program (3.1) even further1 by dropping
the nonnegative derivatives constraint; as we shall see, this will end being without loss
to optimality. This relaxation translates into dual variables si,j not appearing in the
dual Program (3.3) (see also the discussion in Section 3.2.2). So, to be specific, let us
write down how the primal and dual programs become in the current setting of a single
buyer (n = 1) having i.i.d. uniform bids (fj(xj) = 1 for all j ∈ [m]). The primal is

max
u

∫
Im
∇u(x) · x− u(x) dx (4.1)

over the space of absolutely continuous functions u : Im −→ R+ having derivatives

∂u(x)
∂xj

≤ 1 (zj(x))

and the dual
1Recall that Program (3.1) is already a relaxed version of the exact revenue maximization problem,

since we have dropped the convexity constraint of the utility function.
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(a) Feasible solutions z1, z2 to the two-items dual program. Each function zj has to start
at 0 on the entire axis xj = 0 and rise to 1. At no point of the 2-dimensional cube the sum
of their slopes is allowed to exceed 3, and the objective is to keep them as low as possible,
i.e. minimize the volume under their curves.

feasible

optimal

z(x)

1

x10 1/2

sl
op
e
=
2

(b) For the special case of a single item, the dual feasible function z has to start at 0 and
rise to 1 or higher when x = 1, with a slope of at most 2. The optimal function minimizes
the area below it. It is not difficult to see that the optimal solution is to remain at value 0
until x = 1/2 and then increase steadily to 1; the optimal dual objective is equal to the grey
area. This corresponds exactly to the well-known optimal solution of Myerson with reserve
price of 1/2.

Figure 4.1: Geometric interpretation of the dual Program (4.2) for the case of a single-bidder and
m = 1, 2 uniform i.i.d. items.
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min
z1,...,zm

m∑
j=1

∫
Im
zj(x) dx (4.2)

over the space of absolutely continuous functions zj : Im −→ R+ with

m∑
j=1

∂zj(x)
∂xj

≤ m+ 1 (u(x))

zj(0,x−j) = 0 (u(0,x−j))

zj(1,x−j) ≥ 1. (u(1,x−j))

A geometric interpretation of this dual for the case of one and two items, based also on
the discussion about the duality framework of Section 3.1.2, can be found in Figure 4.1.

4.2 The Straight Jacket Auction (SJA)

The duality conditions are not only useful in establishing optimality, but they can in
fact suggest the optimal auction in a natural way. We illustrate this by considering
the case of two items. Starting from Figure 4.1a, we need to find two functions z1 and
z2 that satisfy the boundary constraints and the slope constraint. If we had only one
function, say z1, the solution would be obvious and similar to the solution for one item
(Figure 4.1b): z1(x) would be 0 up to x1 = 2/3 and then increase with a maximum
slope of 3. But if we do the same for both functions z1 and z2, we obtain an infeasible
solution: in the square [2/3, 1]× [2/3, 1] the total slope would be 6 instead of 3. This
implies that the functions need more space to grow; in fact, the area of growth needs
to be at least equal to the area of the square [2/3, 1] × [2/3, 1]. The natural way to
get this space is to add a triangle of area 1/9 in the way indicated in the left part of
Figure 4.2 (the triangle defined by the lines xj = p1 = 2/3, j = 1, 2, and x1 +x2 = p2).
We then seek a dual solution in which only zj grows in area U{j} and both functions
grow in U{1,2} (Figure 4.2). The corresponding primal solution is that only item j is
sold in U{j} and both items are sold in U{1,2}.

The remarkable fact is that the optimal mechanism is completely determined by the
obvious requirement that the area of the triangle must be (at least) equal to 1/9. To put
it in another way: suppose that we knew that the optimal mechanism is deterministic;
then the dual program requires that

• the price p1 for one item must satisfy p1 ≤ 2/3 so that z1 has enough space to
grow from 0 to 1 with the maximum slope 3

• the price p2 for the bundle of both items must be such that the area of the region
U∅ = U{1} ∪ U{2} ∪ U{1,2}, in which the mechanism allocates at least one item, is
at least 2/3 so that both functions have enough space to grow up to 1
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Figure 4.2: The allocation spaces of the optimal SJA mechanisms for m = 2 and m = 3 items.
The payments are given by p1 = m

m+1 , p2 = 2m−
√

2
m+1 , and p3 = 3 − 7.0971

m+1 . The mechanism sells at
least one item within the grey areas U∅, and all items within the dark grey areas U[m]. If we flip
around these dark grey areas by x 7→ 1 − x, so that 1 is mapped to the origin 0, they are exactly
the SIM-bodies defined in Section 4.3.2, for k = 1

m+1 . These SIM-bodies can be seen in Figures 4.3a
and 4.3b, respectively.
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The central point of our work is that these necessary conditions (which we call slice
conditions) are also sufficient. This intuition naturally extends to more items: the
price for a bundle of r items is determined by the slice condition that the r-dimensional
volume in which the mechanism sells at least one item of the bundle is exactly equal
to r/(m+ 1).

Using this intuition, we define here the Straight-Jacket Auction (SJA). This selling
mechanism is deterministic and symmetric; as such, it is defined by a payment vector
p(m) = (p(m)

1 , . . . , p(m)
m ); p(m)

r is the price offered by the mechanism to the bidder for
every subset of r items, r ∈ [m]. We will drop the superscript when there is no confusion
about the number of available items. The utility of the bidder is then given by

u(x) = max
J⊆[m]

∑
j∈J

xj − p|J |

 .
The prices are defined by the slice conditions. For a subset of items J ⊆ [m], let

Pr(J,x−J) be the probability that at least one item in J is sold when the remaining
items have values x−J . The r-th dimensional slice condition is that for every J with
|J | = r and every x−J ,

Pr(J,x−J) ≥ |J |
m+ 1 .

The SJA is the deterministic mechanism which satisfies the slice conditions for all
dimensions as tightly as possible (hence its name), in the following sense: determine
the prices p1, p2, . . . , pm in this order so that, having fixed the previous ones, select
pr as large as possible to satisfy all r-dimensional slice conditions. In particular, this
guarantees that the m-dimensional slice is tight, or equivalently, that the probability
that at least one item is sold is m

m+1 .

Definition 4.1 (Straight-Jacket Auction (SJA)). SJA for m items is the deter-
ministic symmetric selling mechanism whose prices p(m)

1 , . . . , p(m)
m , where p(m)

r is
the price of selling a bundle of size r, are determined as follows: for each r ∈ [m],
having fixed p(m)

1 , . . . , p(m)
r−1, price p(m)

r is selected to satisfy

Prx∼Um

 ∧
J⊆[r]

∑
j∈J

xj < p
(m)
|J |

 = 1− r · k (4.3)

where k = 1
m+1 . In words, p(m)

r is selected so that the probability of selling no
item when r values are drawn from the uniform probability distribution (and the
remaining values of the m− r items are set to 0) is equal to 1− r · k. We will refer
to constraints (4.3) as slice conditions.

If we take the complement of the above probability, an equivalent definition would be
to ask for the probability of selling at least one of items [r], when all other bids for
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items [r+1...m] are fixed to zero, to be rk. That is, if for any dimension m and positive
α1, α2, . . . , αm we define

V (α1, . . . , αm) ≡

x ∈ Im
∣∣∣∣∣∣
∨

J⊆[m]

∑
j∈J

xj ≥ α|J |

 , (4.4)

the volume of the r-dimensional body V (p(m)
1 , . . . , p(m)

r ), let us denote it by v(p(m)
1 , . . . , p(m)

r ),
must be rk (for all r ∈ [m]).

The specific value on the right-hand side of (4.3) depends on the parameter k, which,
in turn, depends on the total number of items m; the exact dependence arises from
the specific values of the primal and dual program. It is however useful in providing
a unifying approach to carry out the discussion and analysis for an arbitrary (albeit
small, k ≤ 1

m+1) parameter k and to plug in the specific value k = 1/(m+1) only when
this is absolutely necessary.

It is not immediate that SJA is well-defined. In order for the mechanism to be well-
defined, there should be prices p(m)

r that satisfy (4.3). For m ≤ 6, the main technical
result of this work is showing that the mechanism is both well-defined and optimal:

Theorem 4.1. The Straight-Jacket Auction mechanism is well-defined and optimal
for uniform i.i.d. valuations, for up to 6 items.

Our proof of this theorem relies significantly on the geometry of these mechanisms.
We conjecture that the theorem holds for any number of items:

Conjecture. The Straight-Jacket Auction mechanism is well-defined and optimal for
uniform i.i.d. valuations and any number of items.

Here is how to use the slice conditions (4.3) to compute the prices of SJA: The
1-dimensional condition on a 1-dimensional hypercube simply means that p(m)

1 = 1 −
1/(m+ 1), because we only have condition x1 < p

(m)
1 . The 2-dimensional condition on

a 2-dimensional boundary requires that the region

{x | x1 + x2 < p2 and x1 < p1 and x2 < p1}

inside the unit square must have area equal to 1− 2/(m+ 1). In other words, we want
to find where to move the line x1 + x2 = p2 so that the area that it cuts satisfies the
slice condition (in the left Figure 4.2, U{1}, U{2}, and U{1,2} have total volume 2

m+1);
this gives p2 = 2 − 2+

√
2

m+1 . We can proceed in the same way to higher dimensions: fix
some dimension m and an order r > 1. If the prices p1, p2, . . . , pr are such that pj−pj−1
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is a nonnegative and (weakly) decreasing sequence, then

v (p1, . . . , pr) =
∫ pr−pr−1

0
v (p1, . . . , pr−1) dt+

∫ pr−1−pr−2

pr−pr−1
v (p1, . . . , pr−2, pr − t) dt

+ . . .+
∫ p1

p2−p1
v (p2 − t, . . . , pr−1 − t, pr − t) dt+

∫ 1

p1
1 dt (4.5)

This is a recursive way to compute the expressions for the volumes v (p1, . . . , pr). In
case that the sequence p1, p2, . . . , pr of the prices up to order r breaks the require-
ment to be increasing at the last step, i.e. pr < pr−1, then simply v (p1, . . . , pr) =
v (p1, . . . , pr−2, pr, pr) and we can still deploy the previous recursion.

An exact, analytic computation of these values for up to r = 6 using the above
recursion is given in [32], but we also list them below for quick reference. In the
following we will often use the transformation

pr = r − µr
m+ 1 (4.6)

so that prices will be determined with respect to some parameters µr. It will be
algebraically convenient to also assume p0 = 0.

• For r ≤ 4 and any number of items m ≥ r:

p1 = m

m+ 1 p2 = 2m−
√

2
m+ 1 p3 ≈ 3− 7.0972

m+ 1 p4 ≈ 4− 11.9972
m+ 1

µ1 = 1 µ2 = 2 +
√

2 µ3 ≈ 7.0972 µ4 ≈ 11.9972

• For r = 5, 6:

p
(5)
5 ≈ 5− 18.0865

6 p5 ≈ 5− 18.0843
m+ 1 (m ≥ 6) p

(6)
6 ≈ 6− 25.3585

7
µ

(5)
5 ≈ 18.0865 µ5 ≈ 18.0843 (m ≥ 6) µ

(6)
6 ≈ 25.3585

4.3 Geometric Properties

4.3.1 Bodies and Deficiency

In this section we develop the geometric theory that captures the critical structural
properties of SJA mechanisms and use this to prove our main result, Theorem 4.1,
that shows their optimality. First we will need to establish some notation and formally
define some notions.

For any positive integer m, an m-dimensional body A is any compact subset of the
nonnegative orthant A ⊆ Rm

+ . We will denote its volume simply by |A| ≡ µ(A) (where
µ is the standard m-dimensional Lebesgue measure). For any index set J ⊆ [m], the
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projection of A with respect to the J coordinates is defined as

A[m]\J ≡ {x−J | x ∈ A}

and is the remaining body of A if we “delete” coordinates J . For any r ∈ [m], index
set J ⊆ [m] with |J | = m− r and t ∈ Rm−r

+ we define the slice of A at the point t with
respect to coordinates J as

A|J :t ≡ {x−J | x ∈ A ∧ xJ = t} .

It is the remaining of the body A if we fix a vector t at coordinates J . The operations of
projecting and slicing bodies commute with each other, that is A[m]\I

∣∣∣
J :t

= (A|J :t)[m]\I

for all disjoint sets of indices I, J ⊆ [m] and |J |-dimensional vector t.
For any set of points S ⊆ Rm

+ we denote their convex hull by H(S) and for any
vector x we will denote by P(x) the set of all permutations of x. We will say that a
body A is downwards closed if for any point of A, all points below it are also contained
in A: y ∈ A for all y ∈ Rm

+ with y ≤ x ∈ A. Body A will be called symmetric if it
contains all permutations of its elements: P(x) ⊆ A for all x ∈ A. If an m-dimensional
body A is symmetric then one can define its width to be the length of its projection
towards any axis:

w(A) ≡ |A{j}| for any j ∈ [m].

In a similar way, if A ⊆ S we will say that A is upwards closed (with respect to S) if
for any x ∈ A, we have y ∈ A for any x ≤ y ∈ S. For any set of points S ⊆ Rm

+ , its
downwards closure is defined to be all points below it:

D(S) =
{
x ∈ Rm

+ | ∃y ∈ S : x ≤ y
}
.

Finally, we describe a property that will play a key role in the following:

Definition 4.2 (p-closure). We will say that a body A is p-closed if it contains the
convex hull of the permutations of any of its elements. Formally:

H(P(x)) ⊆ A for all x ∈ A.

Notice that any p-closed body must be symmetric (but not necessarily convex) and
that any convex symmetric body is p-closed.

We next define the notion of deficiency of a body, which is one of the key geometric
ingredients of our results in this chapter:

Definition 4.3 (Deficiency). For any k > 0, we will call k-deficiency of a body A ⊆ Rm
+

the quantity
δk(A) ≡ |A| − k

m∑
j=1

∣∣∣A[m]\{j}

∣∣∣ . (4.7)

55



This is inspired by the deficiency notion in bipartite graphs defined by Ore [64]. Here
we extend it to the continuous settings, trying to capture how large an m-dimensional
body A is with respect to its (m − 1)-dimensional projections (formal definitions are
given in Section 4.3.1). We will sometimes drop the subscript k in the notation above,
and simply refer to “deficiency”, if the value of parameter k is made clear by the context
or is currently irrelevant.

A useful, trivial to prove property of the deficiency function (see Definition 4.3) is
that it is supermodular :

Lemma 4.1. For any bodies A1, A2,

δ(A1 ∪ A2) + δ(A1 ∩ A2) ≥ δ(A1) + δ(A2).

The next lemma tells us that “leaving gaps” between the points of bodies and the
orthant’s faces can only reduce the deficiency.

Lemma 4.2. For any bodies A,B such that B ⊆ A and A being downwards closed,
there exists a downwards closed sub-body B̃ ⊆ A such that δ(B̃) ≥ δ(B).

Instead of proving this lemma, we provide a stronger construction, given by the
following Lemma 4.3.

Lemma 4.3. Let Am be the set of m-dimensional bodies and Km ⊆ Am be the set
of downwards closed ones. There is a mapping χ : Am → Km such that for every
m-dimensional bodies A and B:

1. |χ(A)| = |A| and for every J ⊆ [m], |χ(A)J | ≤ |AJ |.

2. χ(A) ∪ χ(B) ⊆ χ(A ∪B). Equivalently, A ⊆ B implies χ(A) ⊆ χ(B).

3. if A ∈ Km then χ(A) = A.

It is straightforward to see how Lemma 4.3 implies Lemma 4.2, by taking B̃ = χ(B).
Then, B̃ has the same volume as B and (weakly) smaller projections (Property 1).
This directly implies that δ(B̃) ≥ δ(B). It is also a subset of A (by Property 2):
B̃ = χ(B) ⊆ χ(A) = A; the last equality follows from the fact that A is already
downwards closed and thus invariant under χ (Property 3).

Proof of Lemma 4.3. The lemma is proved by induction on m. For m = 1 it is trivial:
χ(A) is the interval starting at 0 with length equal to |A|.

Fix now a coordinate j ∈ [m] and consider the (m − 1)-dimensional slices A|{j}:t
of A, ranging over t. Apply the lemma recursively (that is, use function χ by the
induction hypothesis from the previous dimension) to each such slice to obtain a body
A′. Let χ′ be this map from Am to Am, i.e. χ′(A) = A′. Notice that A′ may not be
downwards closed, but we argue that χ′ satisfies all three properties.
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Indeed, for Property 1, we have two cases: If j ∈ J then, by using Property 1, we
get

|A′J | =
∫
t

∣∣∣A′J |{j}:t∣∣∣ =
∫
t

∣∣∣(A′|{j}:t)J ∣∣∣ =
∫
t

∣∣∣(χ′(A|{j}:t))J ∣∣∣ ≤
∫
t

∣∣∣(A|{j}:t)J ∣∣∣ =
∫
t

∣∣∣AJ |{j}:t∣∣∣ = |AJ | .

In particular, the above holds with equality when J = [m]. Otherwise, if j 6∈ J , we can
deploy Property 2 to get

|A′J | =
∣∣∣∣∣
(⋃

t

A′|{j}:t

)
J

∣∣∣∣∣ =
∣∣∣∣∣
(⋃

t

χ′
(
A|{j}:t

))
J

∣∣∣∣∣ ≤
∣∣∣∣∣
(
χ′
(⋃

t

A|{j}:t

))
J

∣∣∣∣∣ ≤
∣∣∣∣∣
(⋃

t

A|{j}:t

)
J

∣∣∣∣∣ = |AJ | .

Property 2 is also satisfied because if A ⊆ B then for every t: A|{j}:t ⊆ B|{j}:t, and
thus by induction χ′(A|{j}:t) ⊆ χ′(B|{j}:t), therefore

x ∈ χ′(A) =⇒ x−j ∈ χ′(A|{j}:xj) =⇒ x−j ∈ χ′(B|{j}:xj) =⇒ x ∈ χ′(B).

Property 3 is satisfied, since if A is already downwards closed, its slices are also
downwards closed and, by induction, they will remain unaffected by χ′.

If A is downwards closed with respect to some coordinate i ∈ [m], then χ′(A) will
remain closed downwards with respect to i: It is obvious by induction that χ′ preserves
downwards closure for every coordinate i 6= j. For coordinate i = j, it suffices to notice
that downwards closure of A is equivalent to A|{j}:t ⊆ A|{j}:t′ for all t ≥ t′. Since χ′

satisfies Property 2, the same holds for their images: χ′(A|{j}:t) ⊆ χ′(A|{j}:t′).
Map χ′ is not the desired map, because if A is not already downwards closed

with respect to j, the result may not be downwards closed. However, we can select
another coordinate j′ 6= j to create another map χ′′ similar to χ′. Since χ′′ will satisfy
all properties and preserve the downwards closure of coordinate j′, we conclude that
χ = χ′′ ◦ χ′ has all the desired properties.

The supermodularity of deficiency functions (Lemma 4.1) immediately implies that
if bodies A1, A2 ⊆ S are of maximum deficiency (within S), then both their union and
intersection are also of maximum deficiency. Based on this, the following can be shown:

Lemma 4.4. For any downwards closed and symmetric body A, there is a maximum
volume sub-body of A of maximum deficiency, which is also downwards closed and
symmetric.

Proof. Let B ⊆ A be of maximum deficiency. Then, by Lemma 4.2 there exists a
downwards closed B̃ ⊆ A such that δ(B̃) ≥ δ(B), and due to the maximum deficiency of
B, it must be that δ(B̃) = δ(B). Now, let B̃1, B̃2, . . . , B̃m! be all possible permutations
of the body B̃ (within the m-dimensional space) and take their union B̂ = ⋃m!

i=1 B̃i.
This new body B̂ is clearly symmetric. Also, because of the symmetry of A, all B̃i

remain within A, so B̂ ⊆ A.
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Now notice that all Bi’s have δ(B̃i) = δ(B̃), so they also have maximum deficiency
within A. Remember that the deficiency function is supermodular (Lemma 4.1), so
the union of maximum deficiency sets must also be of maximum deficiency. Thus, B̂
is indeed of maximum deficiency. Finally, it is not difficult to see that union preserves
downwards closure and also, trivially, |B̂| ≥ |B̃|.

The next lemma describes how global maximum deficiency implies also a kind of
local one:

Lemma 4.5. Let A ⊆ S be a maximum deficiency body (within S). Then, every
slice of A must have nonnegative deficiency and must not contain subsets with higher
deficiency.

Proof. To get to a contradiction, suppose that there exists such a slice B = A|J :t of A,
such that δ(B) < 0. Then, let us remove the entire slice B above t from body A, to get
a new body A′. This (m− 1)-dimensional slice though is of measure 0 in the larger m-
dimensional space, so what we should really do is to remove an ε-neighbourhood of B
(around t) within A, of “parallel” slices. This neighbourhood has a volume of positive
measure and is arbitrarily close to the slice2. This section removed from the body had
the property to have volume strictly less than k times its projections with respect to
the coordinates not in J , i.e. the “active” coordinates in B (because we are working
close to B for which δ(B) < 0). Regarding the other remaining projections with respect
to the coordinates in J , by removing points they cannot possibly be increased. Since
volumes have positive sign effect at the expression (4.7) of the deficiency function, and
projections have negative, we can deduce that the resulting body has strictly higher
deficiency than A, which contradicts the maximum deficiency of A within S.

The proof for subsets of the slice with higher deficiency is similar: replace the entire
slice with its subset of higher deficiency, and the total deficiency must increase.

As a consequence of Lemma 4.5 we get the following properties of maximum de-
ficiency sub-bodies, which imply that these bodies must be “large enough” (Lem-
mas 4.7 and 4.8) and also demonstrate some kind of “symmetric convexity” (p-closure
Lemma 4.9, Definition 4.2). But first we will need an inequality that brings together
volumes and projections of bodies, due to Loomis and Whitney [50]. An easy proof of
this can be found in [3].

Lemma 4.6 (Loomis-Whitney). For any m-dimensional body A,

|A|m−1 ≤
m∏
j=1

∣∣∣A[m]\{j}

∣∣∣ .
2For ease of presentation, in the following we will use that procedure without making explicit

mention to the underlying technicalities.
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Lemma 4.7. Let A 6= ∅ be an m-dimensional body with nonnegative k-deficiency.
Then

|A| ≥ (km)m.

As a consequence, if A is also symmetric and downwards closed, its width must be at
least

w(A) ≥ km.

Proof. Since δk(A) ≥ 0, we know that

|A| ≥ k
m∑
j=1

∣∣∣A[m]\{j}

∣∣∣ ,
or equivalently

m∑
j=1

∣∣∣A[m]\{j}

∣∣∣ ≤ |A|
k
. (4.8)

Also, by the Loomis-Whitney inequality (Lemma 4.6):

|A|m−1 ≤
m∏
j=1

∣∣∣A[m]\{j}

∣∣∣ .
So, by using the arithmetic–geometric means inequality we can derive that

|A|m−1 ≤

 1
m

m∑
j=1

∣∣∣A[m]\{j}

∣∣∣
m ,

or equivalently
m∑
j=1

∣∣∣A[m]\{j}

∣∣∣ ≥ m |A|
m−1
m . (4.9)

Combining (4.8) and (4.9) we get

m |A|
m−1
m ≤ |A|

k
,

which completes the proof of the lemma (since |A| 6= 0). The inequality involving
the body’s width follows immediately from the observation that every symmetric and
downwards closed body A is included in them-dimensional hypercube with edge length
w(A).

Lemma 4.8. If A is a nonempty symmetric, downwards closed body with nonnegative
deficiency then it must contain the point (k, 2k, . . . ,mk). More generally, it must
contain the point (k, 2k, . . . , (m− 1)k, w(A)).

Proof. We will recursively utilize Lemmas 4.5 and 4.7 to show that points

(mk,0m−1), (mk, (m− 1)k,0m−2), . . . , (mk, (m− 1)k, . . . , k)
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belong to Â, where Â is a symmetric, downwards closed sub-body of A of maximum
deficiency (see Lemma 4.4). By Lemma 4.7 it must be that that w(Â) ≥ mk, thus
(mk,0m−1) ∈ Â by downwards closure. For the next dimension, consider the slice
Â
∣∣∣
{j}:mk

(for some j ∈ [m]). It is (m − 1)-dimensional, of nonnegative deficiency by
Lemma 4.5 and so it must have width at least (m − 1)k (Lemma 4.7). That means
that point (mk, (m − 1)k,0m−2) must be in Â. We can continue like this all the way
down to single-dimensional lines.

Lemma 4.9 (p-closure). Let A ⊆ S be a maximum volume sub-body of S of maximum
deficiency and let S be p-closed. Then every slice of A (including A itself) must be
p-closed (see Definition 4.2).

Proof. Without loss (by Lemma 4.4) A can be assumed to be symmetric and downwards
closed. We need to prove that for any r ∈ [m] (r is the dimension of the slice) and any
r-dimensional vector x and z ∈ H(P(x)) in the convex hull of its permutations:

for all t : (x, t) ∈ A =⇒ (z, t) ∈ A.

The proof is by induction on r. For the base case of r = 1, it is H(P(x)) = {x} so
the proposition follows trivially. For the induction step, assume the proposition is true
for some r ≤ m− 1 and we will prove it for r+ 1. So, take (r+ 1)-dimensional vectors
x and z such that z ∈ H(P(x)) and fix some t ∈ Rm−r−1

+ . To complete the proof we
need to show that the slice of A above x, with respect to the first r + 1 coordinates,
is included within the one above z, i.e. A|[r+1]:x ⊆ A|[r+1]:z. For simplicity, lets abuse
notation for the remaining of this proof and just use Ax and Az for these slices.

So, to arrive at a contradiction, let us assume that Ax \ Az 6= ∅. First notice that
since Ax ∩ Az ⊆ Ax and Ax is a slice of a maximum deficiency body, by Lemma 4.5
it must be that δ(Ax ∩ Az) ≤ δ(Ax). So, by the supermodularity of deficiencies
(Lemma 4.1) we get that

δ(Ax ∪ Az) ≥ δ(Az).

This means that if we replace (an ε-neighbourhood around z of) slice Az by its superset
Ax ∪Az and we can also show that no new projections are created with respect to the
first r + 1 coordinates, then the overall deficiency of the body would not decrease and
its volume would increase strictly (since we have assumed that Ax \ Az 6= ∅), which is
a contradiction to the maximum deficiency of A within S. Notice a subtle point here:
how do we know that this extension can fit within S above point z? It does, because we
have assumed S to be p-closed and the new elements added are convex combinations
of permutations of elements already known to be in S. The remaining of the proof is
dedicated to proving that this extension indeed does not create new projections with
respect to the first r + 1 coordinates.

Without loss, due to symmetry, we can take x1 ≤ x2 ≤ · · · ≤ xr+1. We argue that,
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if we remove any one of the coordinates of the vector z, it can be dominated by a
convex combination of permutations of the vector x−1 (i.e. the vector x if we remove
its smallest coordinate). To see that, remember that z is at the convex hull of the
permutations of x, so there exist nonnegative real parameters {ξπ} such that

z =
∑

π∈P(x)
ξππ and

∑
π∈P(x)

ξπ = 1.

But that means that
z−j =

∑
π∈P(x)

ξππ−j (4.10)

for any coordinate j. Now let us define a transformation φ over all vectors

{π−j | π ∈ P(x) and j ∈ [r + 1]}

such that φ(π−j) = π−j if the j-th coordinate removed from π to get π−j was x1, and
otherwise φ(π−j) is the r-dimensional vector that we get if we replace x1 in π−j by the
coordinate πj that was removed. It follows that for all j

π−j ≤ φ(π−j) and φ(π−j) ∈ P(x−1),

so by (4.10):
z−j ≤

∑
π∈P(x)

ξπφ(π−j) ∈ H(P(x−1)).

By the induction hypothesis and downwards closure for A it can be deduced that

(x−1, 0, t) ∈ A =⇒ (z−j, 0, t) ∈ A for all j ∈ [r + 1].

Thus in particular for every t ∈ Ax, due to symmetry of A, we have that

((z−j, 0), t) ∈ A,

which means that indeed every projection of (z, t) with respect to a coordinate in [r+1]
was already included in A.

4.3.2 SIM Bodies

Definition 4.4 (SIM-bodies). For positive α1 ≤ · · · ≤ αr, let

Λ(α1, . . . , αr) ≡

x ∈ Rr
+

∣∣∣∣∣∣
∧
J⊆[r]

∑
j∈J

xj ≤
r∑

j=r−|J |+1
αj

 . (4.11)
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We call these SIM-bodies3. We will also use the following notation

q · Λ(α1, . . . , αr) ≡ Λ(q · α1, . . . , q · αr)

for any positive real q.

The geometry of the allocation space of the SJA mechanisms (see Figure 4.2) nat-
urally gives rise to this family of bodies. Their importance and connection with the
structure of the SJA mechanisms will become evident in Section 4.4 where we prove
Lemma 4.16. The intuition behind the naming becomes obvious if one looks at Fig-
ure 4.3a. By the way SIM-bodies are defined, one can immediately see that they are
downwards closed, symmetric and convex polytopes. Thus, they are also p-closed.
Each one of its faces corresponds to a defining hyperplane

∑
j∈J

xj = αr+1−|J | + · · ·+ αr

for some J ⊆ [r] or, of course, to a side of the r-dimensional positive orthant Rm
+ .

SIM-bodies demonstrate some inherently recursive and symmetric properties, cap-
tured by the following lemma. They are made clear in Figure 4.3.

Lemma 4.10. For any SIM-body Λ = Λ(α1, . . . , αr):

1. w(Λ) = αr

2. Λ = D(H(P(α1, . . . , αr)))

3. Λ|{j}:αr = Λ(α1, . . . , αr−1) for any j ∈ [r]

4. Λ[r]\{j} = Λ(α2, . . . , αr) for any j ∈ [r]

5. δq·k(q · Λ) = qr · δk(Λ) for any q, k > 0

Proof. Property 1 is trivial: by the definition of SIM-bodies (4.11), a point (x,0r−1) ∈ Λ
if and only if x ≤ αr ∧ . . . ∧ x ≤ α1 + · · ·+ αr, i.e. x ≤ αr.

For Property 2, let E be the set of the extreme points of the polytope Λ. It is
convex, thus Λ = H(E). But it is also downwards closed, so we can just focus to the
extreme points E ⊆ E that belong to the “full” facet of the hyperplane x1 + . . . xr = pr,
since the entire polytope can be recovered as the downwards closure Λ = D(H(E)). By
taking intersections with the other hyperplanes and keeping in mind that the αj’s are
non-decreasing, we get that these extreme points in E are (α1, α2, . . . , αr) and all its
permutations. So, we can recover the entire SIM-body as Λ = D(H(P(α1, . . . , αr))).

3The naming is inspired by the shape of the subscriber identity module (SIM) integrated circuit
cards used in mobile phone devices (see Figure 4.3a).
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x2

x1

Λ(λ1, λ2)

λ2

λ2

(λ2, λ1)

(λ1, λ2)

x1 + x2 = µ2

0

Λ(λ1)

Λ(λ1)

(a) The 2-dimensional SIM-body Λ(λ1, λ2)

(b) The 3-dimensional SIM-body Λ(λ1, λ2, λ3)

Figure 4.3: SIM-bodies for dimensions m = 2, 3. Notice the recursive nature of these construc-
tions: a SIM-body encodes in it the SIM-bodies of lower dimensions as extreme slices (Property 3 of
Lemma 4.10). In this figure, these 1-dimensional critical bodies are denoted by thick lines (blue in
the colour version) and the 2-dimensional ones in light grey.
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For Property 3, notice that an (r − 1)-dimensional vector x belongs in the slice
Λ|{j}:αr if and only if (x, αr) ∈ Λ, which by using (4.11) is equivalent to

∧
J⊆[r−1]

(∑
i∈J

xi ≤ αr+1−|J | + · · ·+ αr

)
and

∧
J⊆[r−1]

(
ar +

∑
i∈J

xi ≤ αr−|J | + · · ·+ αr

)
.

The second set of conditions can be rewritten simply as

∧
J⊆[r−1]

∑
i∈J

xi ≤ αr−|J | + · · ·+ αr−1 (4.12)

which makes the first set of constraints redundant since

αr−|J | + · · ·+ αr−1 ≤ αr+1−|J | + · · ·+ αr

from the monotonicity of the sequence of αr’s. The constraints (4.12) that we are left
with, exactly define Λ(α1, . . . , αr−1) (see (4.11)).

Property 4 can be shown in a very similar way: due to downwards closure, any
projection Λ[r]\{j} is just the slice Λ|{j}:0.

Finally, Property 5 is a result of scaling: q ·Λ and Λ are similar by a scaling factor
of q, so the ratio of their volumes is qr and the ratio of their projections is qr−1. In
formula (4.7) that defines deficiencies, the volumes of the projections are also multiplied
by the parameter k of the deficiency, resulting to an overall ratio of qr between the two
deficiencies.

4.3.3 Matchings

The notion of a matching in a bipartite graph will be very useful for our exposition,
so here we recall some basic relevant graph-theoretic facts. Let G = (V,E) be an
undirected graph with node set V and edge set E. We will use standard notation and
for any set of nodes X ⊆ V , N(X) will denote its set of neighbours, i.e.

N(X) = {y ∈ V | (x, y) ∈ E for some x ∈ X } .

A matching M ⊆ E on G is a set of edges with pair-wise no common endpoints, i.e.

(x, y), (x′, y′) ∈M =⇒ x 6= x′ ∧ y 6= y′.

We will say that M completely matches a subset of nodes V ′ ⊆ V if for any x ∈ V ′

there is an edge (x, y) ∈M for some y ∈ V .
If G is bipartite with node sets X, Y , i.e. V = X ∪ Y and E ⊆ X × Y , Hall’s

Theorem [51] tells us that there exists a matching in G that completely matches X if
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and only if
|S| ≤ |N(S)| for all S ⊆ X. (Hall’s condition)

4.4 Decomposition of SJA

In this section we bring together all the necessary elements needed to prove Lemma 4.16.
We study the structure of the allocation space of SJA that reveals an elegant decom-
position which demonstrates that the SIM-bodies essentially act as building blocks for
SJA.

Definition 4.5. We denote by U (m)
J the subdomain in which SJA allocates exactly the

bundle J ⊆ [m] of items:

U
(m)
J ≡

x ∈ Im
∣∣∣∣∣∣
∧

L⊆[m]

∑
j∈J

xj − p(m)
|J | ≥

∑
j∈L

xj − p(m)
|L|

 . (4.13)

Let U (m)
J

∣∣∣
−J :t

denote the |J |-dimensional slice of U (m)
J when we fix the values of the

remaining [m] \ J items to t:

U
(m)
J

∣∣∣
−J :t

= {xJ : (xJ , t) ∈ UJ}.

For example, the slices of U (m)
{1} are the horizontal (1-dimensional) intervals; when J =

[m], U (m)
J has only one slice, itself. Figure 4.2 shows the various subdomains U (m)

J for
m = 2, 3.

A simple algebraic manipulation of (4.13), using the non-decreasing property of the
SJA payments, gives us the following characterization:

Lemma 4.11. For any subset of items J ⊆ [m],

U
(m)
J =

x ∈ Im
∣∣∣∣∣∣
∧
L⊆J

∑
j∈L

xj ≥ p
(m)
|J | − p

(m)
|J |−|L|

∧
L⊆[m]\J

∑
j∈L

xj ≤ p
(m)
|J |+|L| − p

(m)
|J |

 .
Notice here that, due to symmetry, every slice U

(m)
J

∣∣∣
−J :t

with |J | = r ≤ m is
isomorphic to U

(m)
[r]

∣∣∣
[r+1...m]:t

and so, from the characterization in Lemma 4.11, this
slice is invariant with respect to the specific value of the ((m− r)-dimensional) vector
t. In particular, if it’s nonempty, then

U
(m)
J

∣∣∣
−J :t

= U
(m)
J

∣∣∣
−J :0m−|J|

. (4.14)

The following lemma essentially gives an alternative definition of SJA, in terms
of the deficiencies of its allocation components U (m)

J . In particular, it requires every
|J |-dimensional slice of any subdomain U (m)

J to have zero deficiency:
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Lemma 4.12. Every slice U (m)
J

∣∣∣
−J :t

of SJA has zero k-deficiency, where k = 1
m+1 .

Proof sketch. Fix some dimension m and let k = 1
m+1 . By the definition of SJA (4.3),

the domain U∅ where at least one item is sold must have volume m
m+1 : the probability

of selling at least an item is mk = m
m+1 which corresponds to the volume of this domain

because the valuations’ space is the unit cube Im. Every projection (U∅){j} of this body
towards any coordinate j ∈ [m] has volume 1: it is the (m − 1)-dimensional side of
the cube; just set the valuation of item j to xj = 1 and trivially notice that no matter
what the remaining valuations x−j ∈ Im−1 are, at least one item is being sold by SJA,
namely item j, since xj = 1 ≥ p1. Bringing the above together, this means that the
k-deficiency of U∅ is m/(m+ 1)− k ·m · 1 = 0.

This valuations subdomain U∅ where at least one item is sold, can be decomposed
in its various components UJ , where ∅ 6= J ⊆ [m]. Its volume is just the sum of the
volumes of these components. Also, its projections (i.e. the sides of the unit cube Im)
can be covered by taking the projection of any such component UJ with respect to its
“active” coordinates in J . This tells us that the deficiency of the entire body U∅ is
essentially reduced to the sum of the deficiencies of its subdomains. But this body has
zero k-deficiency, so all its components must also have zero deficiencies (by using an
inductive argument).

A complete, formal proof of this characterization can be found in the following
subsection:

Full Proof of Lemma 4.12

Recall the definition of body V (p(m)
1 , . . . , p(m)

r ) in (4.4). By the definition of SJA in (4.3),
the volume of this body must be equal to rk. Then, as we discussed in the proof sketch
of Lemma 4.12 in Section 4.4, this translates to its deficiency being zero:

δ 1
m+1

(V (p(m)
1 , . . . , p(m)

r )) = 0 for all r ≤ m. (4.15)

Before giving the formal proof of Lemma 4.12, we will need the following lemma
that shows how the deficiency of any such subdomain of the valuation space is the sum
of the deficiencies of its “critical” sub-slices of lower dimensions:

Lemma 4.13. For any subset of items J ⊆ [m], the k-deficiency of any slice of the
subdomain where at least one of the items in J is sold, when all other items’ bids are
fixed to zero, is the sum of the k-deficiencies of all its sub-slices (U (m)

L |−J :0)|J\L:t, where
∅ 6= L ⊆ J and k = 1

m+1 . Formally,

δk(V (p(m)
1 , . . . , p

(m)
|J | )) =

∑
∅6=L⊆J

∫
I|J|−|L|

δk

((
U

(m)
L

∣∣∣
−J :0

)∣∣∣∣
J\L:t

)
dt.

Proof. Fix some m. For the sake of clarity we will prove the proposition for J having
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full dimension J = m. All the arguments easily carry on to the more general case where
J ⊆ [m] if one takes all valuations of items not in J to be 0, i.e. “slicing” ( · )|−J :0,
since they are valid for any selling mechanism with non-increasing price differences and
SJA specifically; essentially, the case of |J | = m′ ≤ m directly translates to the case of
an m′-dimensional mechanism.

So, it is enough to show that

|V | =
∑

∅6=L⊆[m]

∫
Im−|L|

∣∣∣UL|−L:t

∣∣∣ dt (4.16)

∣∣∣V[m]\{j}

∣∣∣ =
∑

∅6=L⊆[m]
j∈L

∫
Im−|L|

∣∣∣∣(UL|−L:t

)
[m]\{j}

∣∣∣∣ dt for all j ∈ [m], (4.17)

where for simplicity we have denoted the space V (p1, . . . , pm) where mechanism allo-
cates at least one item with V . Equation (4.16) is a result of the fact that V can be
decomposed as V = ∑

∅6=L⊆[m] UL and every allocation subspace UL is isomorphic to
the disjoint union of all its slices UL|−L:t. In a similar way, to prove that (4.17) holds,
it is enough to show that for some fixed j ∈ [m], the projection V[m]\{j} can be covered
by the union of all the projections of the sub-spaces UL with respect to coordinate j
and that all these projections (UL)[m]\{j} are disjoint almost everywhere, i.e. they can
only intersect in a set of measure zero.

For the former, let x−j ∈ V[m]\{j}. Then (x−j, 1) ∈ V (by only increasing the
components of a valuation profile, items that were sold to the buyer are still going to
be sold). So, there is a nonempty set of items L ⊆ [m] such that (x−j, 1) ∈ UL and
j ∈ L (item j is sold since xj = 1 ≥ p1), meaning that indeed x−j ∈ (UL)[m]\{j} with
j ∈ L. For the latter, consider distinct sets L,L′ ⊆ [m] with j belonging to both L

and L′, and let a valuation profile x ∈ UL ∩ UL′ . Then, by the characterization in
Lemma 4.11 it must be that

∑
l∈L′\L

xl ≥ p|L′| − p|L′|−|L′\L| and
∑

l∈L′\L
xl ≤ p|L|+|L′\L| − p|L|,

the first inequality being from the fact that x ∈ UL′ and the second from x ∈ UL, taking
into consideration that L′ \ L ⊆ L′ and L′ \ L 6⊆ L. As a result, the sum ∑

l∈L′\L xl

can range at most over only a single value, namely p|L′| − p|L′|−|L′\L| = p|L|+|L′\L| − p|L|
(and only if these two values are of course equal), otherwise by merging these two
inequalities together we would have got that

p|L′| − p|L′|−|L′\L| < p|L|+|L′\L| − p|L|

which contradicts the non-increasing payment differences property, since both differ-
ences are between payments that differ at exactly |L′ \ L| “steps” but |L|+ |L′ \ L| ≥
|L′|.
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Lemma (Lemma 4.12). Every slice U
(m)
J

∣∣∣
−J :t

of SJA has zero k-deficiency, where
k = 1

m+1 .

Proof. Fix some m and let k = 1
m+1 . We use induction on the cardinality of J . At

the base of the induction, |J | = 1 and due to symmetry it is enough to prove the
proposition for slices of the form U{1}

∣∣∣
[2...m]:t

. By (4.14) this is equal to the slice

U{1}
∣∣∣
[2...m]:0m−1

, which is the single-dimensional interval [p1, 1], thus having k-deficiency
1− p1 − 1

m+1 · 1 = m
m+1 − p1 = 0.

For the inductive step, fix some r ≤ m and assume the proposition holds for all
J ⊆ [m] with |J | ≤ r − 1. We will show that it is true also for |J | = r. Again, due to
symmetry, it is enough to prove that the k-deficiency of slice U[r]

∣∣∣
[r+1...m]:0m−r

is zero
(taking into consideration (4.14)). By Lemma 4.13 we have that for the subdomain
where at least one of items [r] is sold given that the remaining [r+ 1...m] bids are fixed
to zero is

δk(V (p1, . . . , pr)) =
∑

∅6=L⊆[r]

∫
Ir−|L|

δk

((
UL|[r+1...m]:0

)∣∣∣
[r]\L:t

)
dt

= δk

(
U[r]

∣∣∣
[r+1...m]:0

)
+

∑
∅6=L⊆[r]
|L|≤r−1

∫
Ir−|L|

δk
(
UL|[m]\L:(t,0)

)
dt

= δk

(
U[r]

∣∣∣
[r+1...m]:0

)
,

by the induction hypothesis. But from the definition of SJA, from (4.15) we have that
δk(V (p1, . . . , pr)) = 0, which concludes the proof.

Now let us return to the normal flow of our presentation in Section 4.4, about the
decomposition of the allocation space of SJA. The way in which the SJA payments are
constructed makes them satisfy a kind of “contraction” property:

Lemma 4.14. The prices of the SJA mechanism have non-increasing differences, i.e.

p(m)
r − p(m)

r−1 ≤ p
(m)
r−1 − p

(m)
r−2

for all r = 2, . . . ,m.

Proof. Fix some dimension m for which the SJA mechanism is well-defined and assume
that we have computed prices up to p1, p2, . . . pr−1 for some 2 ≤ r ≤ m. First we will
show that

(r − 1)pr ≤ rpr−1, (4.18)

i.e. that the price pr must be in [0, r
r−1pr−1]. We will do that by showing that otherwise

this price would be redundant, in the sense that for any pr ≥ r
r−1pr−1 the sub-body of

Ir defined by ∧
J⊆[r]

∑
j∈J

xj < p|J |
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and whose volume must be exactly 1− rk in Definition 4.1, would remain unchanged
and equal to the one defined by

∧
J⊆[r]
|J |≤r−1

∑
j∈J

xj < p|J | (4.19)

In that case, no such pr can be a solution of (4.3) (SJA is well-defined).
Indeed, the body defined from (4.19) is a downwards closed, symmetric convex

polytope and for the newly inserted hyperplane x1 + · · · + xr = pr to have any effect
on it, i.e. to have a non-empty intersection with it, it must be that this hyperplane’s
“symmetric point” (pr

r
, . . . , pr

r
) belongs already to the interior of the body in (4.19)

(this is due to the symmetry and convexity of the body). So, this point must satisfy
the (r − 1)-dimensional condition x1 + · · ·+ xr−1 ≤ pr−1, thus (r − 1)pr

r
≤ pr−1 which

is exactly property (4.18).
To show that pr − pr−1 ≤ pr−1 − pr−2 for all 2 ≤ r ≤ m, or equivalently pr ≤

2pr−1 − pr−2, by (4.18) it is enough to show that r
r−1pr−1 ≤ 2pr−1 − pr−2. But this is

equivalent to (r−1)pr−2 ≤ (r−2)pr−1 which we know that holds, also from (4.18).

Normalized payments. By the procedure of defining SJA payments (Definition 4.1),
it can be the case that price pr is smaller than pr−1, i.e. pr ∈ [pl, pl+1] for some l ≤ r − 2.
This is perfectly acceptable, and it just means that essentially we render older prices
that are above pr redundant, in the sense that setting pj ← pr for all j < r with
pj ≥ pr would not have an effect on the sub-body ∧J⊆[r]

∑
j∈J xj < p|J | of Ir used in

the Definition of SJA in (4.3). This because x1 + · · ·+ xr ≤ pr =⇒ x1 + · · ·+ xj ≤ pj

(since j < r and pr ≤ pj), so old conditions x1 + · · ·+ xj ≤ pj have become useless.
Furthermore, by the non-increasing property of the SJA payments (Lemma 4.14),

every new payment after r will continue to fall below the previous one. So, at the end
the situation will be in the form of

p1 ≤ · · · ≤ pl ≤ pm ≤ . . . (4.20)

for some l < m and, as we discussed above, there will be absolutely no effect on the
mechanism if we update all older payments that have ended up above pm to “collapse”
to pm, i.e.

p1 ≤ · · · ≤ pl ≤ pm = pm−1 = pm−2 = · · · = pl+1. (4.21)

Rigorously, we redefine

p
(m)
j ← p(m)

m for all j ∈ [m− 1] with pj ≥ pm.

While this normalization has no effect on the SJA mechanism itself, it makes sure that
payments are now given in a non-decreasing order, which is an elegant property that
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will simplify our exposition later on.
An important observation is that this normalization of payments does not break

the property of the non-increasing differences of the payments of SJA, i.e. Lemma 4.14
continues to hold: having a look at the transition before and after the normalization
process from (4.20) to (4.21) we see that all the differences up to the l-th payment
remain unchanged, pl+1 − pl can only decrease and all differences above the (l + 1)-th
payment have just collapsed to 0.

From now on and for the remaining of this chapter we will assume that SJA pay-
ments are normalized. The only difference that this makes, for up tom = 6 dimensions,
to the values of the payments we have already computed is that for m = 5, 6 we have
that

p
(5)
4 ← p

(5)
5 and p

(6)
5 ← p

(6)
6

which gives by (4.6) that also the µ(m)
r parameters are updated to µ(m)

m−1 ← µ(m)
m −(m+1):

µ
(5)
4 ≈ 12.0865 µ

(6)
5 ≈ 18.3585.

We now introduce some parameters that will be used extensively in the following.
They are the critical parameters of the SIM-bodies used in all the key theorems for the
optimality of SJA, namely Lemma 4.16, Theorem 4.2 and Theorem 4.3:

λr ≡ µr − µr−1 (4.22)

which is equivalent to saying that µr = λ1 + · · · + λr. Taking the µ(m)
r values into

account (see (4.6)) the λ(m)
r ’s for up to m = 6 items are, for m ≤ 4:

λ1 = 1 λ2 = 1 +
√

2 λ3 ≈ 3.6830 λ4 ≈ 4.9000

and for m = 5, 6 the only modifications are

λ
(5)
4 ≈ 4.9894 λ

(5)
5 = 6 λ

(6)
5 ≈ 6.3613 λ

(6)
6 = 7.

The non-increasing differences property of the SJA payments makes these param-
eters be monotonic:

Lemma 4.15. The λ(m)
r parameters are non-decreasing and upper-bounded by m + 1,

i.e.
λ

(m)
r−1 ≤ λ(m)

r ≤ m+ 1,

for all r = 2, . . . ,m.

Proof. Using the transformations (4.6) and (4.22) we have

pr − pr−1 ≤ pr−1 − pr−2 =⇒ µr−1 − µr−2 ≤ µr − µr−1 =⇒ λr−1 ≤ λr
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and
pr−1 ≤ pr =⇒ µr − µr−1 ≤ m+ 1 =⇒ λr ≤ m+ 1,

which concludes the proof since the SJA payments are non-decreasing with non-increasing
differences (Lemma 4.14).

Now we are ready to prove Lemma 4.16, which makes rigorous the correspondence
between the various components U (m)

J of the allocation space of SJA and SIM-bodies.
It is the motivation behind introducing SIM-bodies in the first place. Essentially, the
entire allocation space of SJA is made up by slices of SIM-bodies:

Lemma 4.16. Every non-empty slice U
(m)
J

∣∣∣
−J :t

is isomorphic to the SIM-body k ·
Λ(λ(m)

1 , . . . , λ
(m)
|J | ), where k = 1

m+1 .

Proof. Let |J | = r. Then, due to symmetry, the slice UJ |−J :t is isomorphic to U[r]

∣∣∣
[r+1...m]:t

.
An r-dimensional vector y belongs to this slice if and only if (y, t) ∈ U[r], which by
Lemma 4.11 means that y ∈ Ir and

∧
L⊆[r]

∑
j∈L

yj ≥ pr − pr−|L|.

By (4.6) this can be written as

∧
L⊆[r]

∑
j∈L

yj ≥ |L| − (µr − µr−|L|)k.

So this slice is an upwards closed body within the r dimensional unit-hypercube Ir

and if we apply the isomorphism y 7→ 1r − y it is flipped around and mapped to the
downwards closed body around the origin 0r defined by y ∈ Ir and ∧L⊆[r]

∑
j∈L yj ≤

(µr − µr−|L|)k. By taking into consideration (4.22) this becomes

∧
L⊆[r]

∑
j∈L

yj ≤ λr−|L|+1k + · · ·+ λrk. (4.23)

It is easy to see that the extra condition y ∈ Ir can be replaced by the weaker one
y ∈ Rr

+, since the upper bounds yj ≤ 1 are already captured by (4.23): for L = {j} it
gives

yj ≤ λrk = λr
m+ 1 ≤ 1, (4.24)

the last inequality holding from Lemma 4.14. So, we end up with exactly the definition
of Λ(kλ1, . . . , kλr). We must note here that this SIM-body is well defined, since the
λr’s are non-decreasing (Lemma 4.14).
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4.5 The Optimality of SJA

In this section we conclude the proof of our main result about the optimality of SJA
(Theorem 4.1). Remember that parameters λ(m)

r depend on the payments of the SJA
mechanism (particularly, on the µ(m)

r ’s in (4.6)) and are given by (4.22), and that U (m)
J

denotes the subdomain in which SJA allocates exactly the bundle J ⊆ [m] of items
(see (4.13)):

In addition to the SIM-bodies Λ(λ1, . . . , λr) being essentially the building blocks of
the allocation space of the SJA (Lemma 4.16), the particular choice of the λr parameters
makes them satisfy another property; they have zero 1-deficiency:

Lemma 4.17. For any dimension m, if a subdomain U
(m)
J of SJA is nonempty then

the corresponding SIM-body Λ(λ(m)
1 , . . . , λ

(m)
|J | ) has zero 1-deficiency.

Proof. Fix some m and let k = 1
m+1 . For any nonempty subdomain UJ , the slice

UJ |−J :0m−|J| is nonempty (by downwards closure), so by Lemma 4.12 it has zero k-
deficiency. But from Lemma 4.16 it is also isomorphic to the SIM-body k·Λ(λ(m)

1 , . . . , λ(m)
r ),

thus δk(k ·Λ(λ(m)
1 , . . . , λ(m)

r )) = 0. By Property 5 of Lemma 4.10 this means that indeed
δ1(Λ(λ(m)

1 , . . . , λ(m)
r )) = 0.

Now we are ready to prove Theorem 4.2. It is essentially the only ingredient of this
chapter whose proof does not work for more than 6 items (condition (4.26), specifically).
In a way it demonstrates the maximality of the deficiency of the particular critical SIM-
bodies Λ(λ1, . . . , λr), in the sense that they cannot contain subsets that have greater
deficiency than themselves.

Theorem 4.2. For up to m ≤ 6, no SIM-body Λ(λ(m)
1 , . . . , λ(m)

r ) corresponding to a
nonempty subdomain U (m)

[r] contains positive 1-deficiency sub-bodies.

Proof. We will prove the stronger statement that for all r ≤ m ≤ 6 no SIM-body
Λ(λ(m)

1 , . . . , λ(m)
r ) contains a sub-body with nonnegative 1-deficiency greater than its

own, i.e.

∅ 6= A ⊆ Λ(λ(m)
1 , . . . , λ(m)

r ) ∧ δ1(A) ≥ 0 =⇒ δ1(A) ≤ δ1(Λ(λ(m)
1 , . . . , λ(m)

r ))
(4.25)

This is enough to establish the lemma, because of Lemma 4.17. We will use induction
on r. At the basis, whenever r = 1, for any number of items m the SIM-body is just
the line segment Λ(λ(m)

1 ) = [0, λ(m)
1 ] and it is easy to see that every (nonempty) subset

of it will have smaller volume but the same projection, resulting to smaller deficiency.
Moving on to the inductive step, for simplicity denote Λ = Λ(λ(m)

1 , . . . , λ(m)
r ) and

let A ⊆ Λ be a maximum volume sub-body of maximum nonnegative deficiency within
Λ. Without loss (by Lemma 4.4) A can be assumed to be symmetric and downwards

72



closed. By Lemma 4.9, this tells us that every slice of it must be p-closed (since A is
within Λ which is a SIM-body and thus p-closed). We will prove that A = Λ which is
enough to establish (4.25).

We start by showing that the outmost (r − 1)-dimensional slice of A, namely
A|{1}:w(Λ), cannot be empty. Notice that, by Property 1 of Lemma 4.10, w(Λ) = λ(m)

r .
The choice of coordinate 1 here is arbitrary; due to symmetry any slice A|{j}:w(Λ) with
j ∈ [r] would work in exactly the same way. If this slice was empty, we could add
in this free space of A (an ε-neighbourhood of) the (r − 1)-dimensional SIM-body B
defined by

B = Λ(λ(m′)
1 , . . . , λ

(m′)
r−1 ) where m′ =

r − 1, if U (m)
[r−1] = ∅,

m, otherwise.

By taking into consideration the values of the λ(m)
j parameters of the SJA mechanism

we can see that the following properties are satisfied for all j ≤ m ≤ 6,

λ
(m′)
j ≤ λ

(m)
j and λ

(m)
j ≤ j + 1, (4.26)

so it must be that

B ⊆ Λ(λ(m)
1 , . . . , λ

(m)
r−1) = Λ|{1}:λ(m)

r
,

the first inclusion being a result of (4.26) and the last equality being from Property 3
of Lemma 4.10. This means that B indeed fits in the exterior space Λ at distance
x1 = λ(m)

r , which is exactly where we put it.
We will now show that this addition caused no decrease at the 1-deficiency of A,

which would contradict the maximality of the volume of A. Equivalently, we need to
show that the increase we caused in the volume by extending A was at least equal
to the increase in the total volume of its projections. First, we show that no new
projections were created with respect to coordinate 1, i.e. B was already included in
A[r]\{1} = A|{1}:0. Indeed, it is

B = D(H(P(λ(m′)
1 , . . . , λ

(m′)
r−1 ))) ⊆ D(H(P(2, . . . , r))) ⊆ A|{1}:0 .

The first equality comes from Property 2 of the SIM-bodies in Lemma 4.10, the second
inclusion is from (4.26) and the last inclusion is by Lemma 4.8 and the p-closure of
A|{1}:0. What is left to show is that the sum of the new projections created with respect
to the remaining coordinates [2...r] was at most equal to the increase in the volume.
But this comes directly from the fact that the slice B we added has zero 1-deficiency:
it is a SIM-body corresponding to a subdomain U (m′)

[r−1] 6= ∅ (see Lemma 4.17).
So, in the following we can indeed assume that body A ⊆ Λ is of maximum width
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w(A) = λ(m)
r . Then we will show that at x1 = w(A), A must in fact include the entire

corresponding slice of Λ. This slice is Λ|{1}:λmr = Λ(λ(m)
1 , . . . , λ

(m)
r−1), so that would mean

that the extreme point (λ(m)
1 , . . . , λ

(m)
r−1, λ

(m)
r ) is in A, and thus by p-closure (Lemma 4.9)

the body D(H(P(λ(m)
1 , . . . , λ(m)

r ))) must be included within A. But from Property 2 of
Lemma 4.10 this body is exactly the entire external body Λ, which concludes the proof.
So let us show that indeed A|{1}:λmr = Λ|{1}:λmr . It is enough to show that removing
this slice of A and replacing it with the full slice of Λ would result in a non-decrease
of the 1-deficiency: that would contradict the maximality of the volume of A.

First, notice that A|{1}:λmr is within Λ|{1}:λmr , where Λ|{1}:λmr is the SIM-body Λ(λ(m
1 , . . . , λ

(m)
r−1)

and also slice A|{1}:λmr must have nonnegative deficiency (by Lemma 4.5). So, by the
induction hypothesis it must be that the full slice Λ|{1}:λmr has at least the deficiency of
the slice A|1:λmr it replaces. That means that, taking into consideration only projections
in the directions [2...r], the overall change in the deficiency is indeed nonnegative. So,
to conclude the proof it is enough to show that no new projections with respect to
coordinate 1 are created by this replacement, i.e. that Λ(λ(m

1 , . . . , λ
(m)
r−1) was already

included in A[r]\{1} = A|{1}:0. Indeed:

Λ(λ(m
1 , . . . , λ

(m)
r−1) = D(H(P(λ(m)

1 , . . . , λ
(m)
r−1)))

⊆ D(H(P(λ(m)
1 , . . . , λ

(m)
r−2, λ

(m)
r )))

⊆ D(H(P(2, . . . , r − 1, w(A)))),

by (4.26) and the fact that w(A) = λ(m)
r , which concludes the proof since slice A|{1}:0

is p-closed and (2, . . . , r−1, w(A)) belongs to it, because (1, 2, . . . , r−1, w(A)) belongs
to A by Lemma 4.8.

We now present our main tool to prove that SJA is optimal. It utilizes the fact
that the allocation space of SJA has no positive deficiency subsets in a combinatorial
way.

Theorem 4.3. If for every nonempty subdomain U (m)
J of SJA the corresponding SIM-

body Λ(λ(m)
1 , . . . , λ

(m)
|J | ) contains no sub-bodies of positive 1-deficiency, then SJA is op-

timal.

Proof. The proof of Theorem 4.3 is done via a combinatorial detour to a discrete version
of the problem, which is interesting in its own right and highlights the connection of the
dual program with bipartite matchings. The nonpositive deficiencies property allows
us to utilize Hall’s marriage condition. Let us denote by Ij ≡ {(x−j, 1) | x ∈ Im} the
side on the boundary of the Im cube which is perpendicular to axis j, for j ∈ [m].

We start by restricting the search for an appropriate feasible dual solution to those
functions zj(x) that have the following form:
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Figure 4.4: Proper colourings of the allocation space U∅ of the SJA mechanism for m = 2 items and
different discretization factors N = 18 (left) and N = 105 (right). Blue corresponds to the direction of
the horizontal axis and red to the vertical axis. The zero region U∅ where no item is allocated (white
region in Figure 4.2) is coloured in yellow. Notice how the entire region U{1} is coloured blue and the
entire U{2} red. The critical and technically involved part of the colouring for two items is the one
of region U{1,2} where both items are allocated. Interpreting this in the realm of the dual program
and the language of the proof of Theorem 4.3, blue is colour 1 and corresponds to the points where
function z1 increases with “full” derivative m + 1 = 3 (with respect to the coordinate x1) while z2
remains constant (with respect to coordinate x2). Red is colour 2 and denotes the reverse situation
where z2 increases with derivative 3 (with respect to coordinate x2) and z1 remains constant (with
respect to variable x1). Yellow is colour 0 where both z1 and z2 are constant.

Fix some integer N which is a multiple of m + 1 and let ε′ = 1/N . We
discretize the space by taking a fine grid partition of the hypercube Im into
small hypercubes of side ε′ and we require that inside each small hypercube
the derivatives ∂zj(x)/∂xj are constant and take either value 0 or value
m+ 1.

We must point out here that this discretization is used only in the analysis and it is
not part of the optimal selling mechanism which is given just by its prices p(m)

r .
With the discretization, the combinatorial nature of the dual solutions emerges:

a dual solution is essentially a colouring of all the ε′-hypercubes of Im into colours
0, 1, . . . ,m. The interpretation of the colouring is the following: the derivative ∂zj(x)/∂xj
has a positive value m+ 1 if and only if the corresponding hypercube (at which x be-
longs to) has colour j, otherwise it is zero (i.e. zj(x) is constant with respect to the
direction of the j-axis); colour 0 is used exactly for the points where all zj functions
are constant. A feasible dual solution corresponds to a colouring in which every line of
hypercubes parallel to some axis, say axis j, contains at least N/(m+ 1) hypercubes of
colour j. To see this, notice that function zj(x) must increase in a fraction of (at least)
1/(m + 1) of those small hypercubes (because it starts at value 0 and has to increase
to a value of at least 1, see the dual constraints in Theorem 6.1). Figure 4.4 illustrates
such a colouring for m = 2 items.
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To formalize this let us discretize the unit-cube Im in ε′-hypercubes

[(i1 − 1) · ε′, i1 · ε′]× · · · × [(im − 1) · ε′, im · ε′]

where ij ∈ [N ] for all j ∈ [m] (see Figure 4.5). To keep notation simple, we will
sometimes identify hypercubes by their centre points, i.e. refer to the ε′-hypercube x
instead of the cube [x1− ε′/2, x1 + ε′/2]× · · · × [xm− ε′/2, xm + ε′/2]. In that way, Im

is essentially an m-dimensional lattice of points

((i1 − 1) · ε′ + ε′/2, . . . , (im − 1) · ε′ + ε′/2) , ij ∈ [N ], j ∈ [m].

Based on this, for any S ⊆ Im we will denote by ∆(S) the set of lattice points in S.
Next, consider the subdomain UJ where SJA sells exactly the items that are in

J ⊆ [m]. For any one of these “active” coordinates j ∈ J take UJ ’s boundary at side Ij
of the unit-cube and “inflate” it to have a width of k = 1

m+1 . Formally, for all J ⊆ [m]
and j ∈ J define

BJ,j ≡ {(t,x−j) | x ∈ UJ ∧ t ∈ [1, 1 + k]} . (4.27)

BJ,j is isomorphic to (UJ)[m]\{j} × [0, k]. For any subset of items J ⊆ [m] denote
BJ = ⋃

j∈J BJ,j and B = ⋃
J⊆[m] BJ the entire external layer on all sides.

Notice that U∅ cannot be perfectly discretized: the small hypercubes do not fit
exactly inside U∅ because its boundaries are not rectilinear4. To fix this, we will take
a cover U∗∅ of U∅ which can be partitioned into ε′-hypercubes. More precisely, define
U
∗
∅ to be the union of all ε′-hypercubes of Im that intersect U∅. Finally, let us also

extend the boundary region B by adding on top of every boundary component BJ,j a
thin strip

B∗J,j = {(t,x−j) | x ∈ UJ ∧ t ∈ [1 + k, 1 + k + g(m) · ε′]} (4.28)

where g(m) = d
√
m+ 1e, and extend notation in the obvious way: B∗J = ⋃

j∈J B
∗
J,j and

B∗ = ⋃
j B
∗
j .

Now it’s time to fully reveal the combinatorial structure of our construction by defin-
ing a bipartite graph G(∆(U∗∅)∪∆(B ∪B∗), E), which has as nodes the ε′-hypercubes
of the cover U∗∅ and the boundary B ∪ B∗ (see Figure 4.5). Intuitively, the edges E
will connect all lattice points of a subdomain UJ with the nodes of its corresponding
boundary BJ ∪B∗J that agree on m−1 coordinates; each UJ is projected onto the sides
Ij of the cube that correspond to active items j ∈ J . To be precise, for any x ∈ ∆(U∗∅)
and y ∈ ∆(B ∪B∗),

(x,y) ∈ E ⇐⇒ x−j = y−j for some j ∈ J , J ⊆ [m], with ε′-hypercube x intersecting UJ .
4The solution of partitioning the unit hypercube into small simplices instead of small hypercubes

does not work either; although simplices have more appropriate boundaries, we cannot guarantee that
exists an ε′ for which all the boundaries of U∅ coincide with some boundaries of the small simplices.
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Another way to view this is that edges start from a node on a side j of the external
layer B ∪ B∗, are perpendicular to that side of the unit-cube (i.e. parallel to axis j)
and run towards its interior body U∗∅, excluding the areas where j is not sold.

By this construction, a bipartite matching of graph G that matches completely the
initial boundary ∆(B) corresponds to a proper colouring of the ε′-hypercubes of Im: an
internal cube matched to a node in side Bj is assigned colour j and all unmatched
cubes are assigned colour 0; every line parallel to an axis j ∈ [m] contains at least
k/ε′ = N/(m+ 1) distinct hypercubes in the boundary Bj.

What does the nonpositive 1-deficiency property of all SIM-bodies Λ(λ1, . . . , λr),
r ≤ m, can tell us about graph G? Remember (Lemma 4.16) that these SIM-bodies
correspond to slices UJ |−J :t of the allocation space, so (using also Property 5 of
Lemma 4.10) for any J ⊆ [m], t ∈ Rm−|J |

+ and S ⊆ UJ |−J :t:

|S| ≤ k
∑
j∈J
|Sj| , (4.29)

where Sj ≡ S[m]\{j}. Using the fact that every such slice UJ |−J :t has zero k-deficiency
(Lemma 4.12), if we take compliments

S = UJ |−J :t \ S and Sj =
(
UJ |−J :t

)
[m]\{j}

\ Sj

the above relation gives
k
∑
j∈J

∣∣∣Sj∣∣∣ ≤ ∣∣∣S∣∣∣ . (4.30)

First we will show that there is a matching on the bipartite graph G we defined,
which completely matches all nodes in ∆(U∅). By (4.29) and the fact that every
(UJ)[m]\{j}× [0, k] is isomorphic to BJ,j, Hall’s theorem tells us that we can completely
match ∆(UJ |−J :t) into ∆(BJ). By the way we have constructed the edge set E, this
directly means that there is a complete matching of ∆(U∅) into ∆(B). So, to extend
this into a complete matching of the cover ∆(U∗∅), it is enough to show that the extra
lattice points in U

∗
∅ \ U∅ of any line parallel to some axis j are at most g(m), the

number of neighbours in the extended thin-stripe boundary B∗. Indeed, any point in
U
∗
∅ cannot have distance more than

√
mε′ ≤ g(m)ε′ from a point in U∅, because every

ε′-hypercube of U∗∅ intersects with U∅ and the diameter of such a hypercube (with
respect to the euclidean metric) is exactly

√
mε′.

We will now show that there is also a complete matching of ∆(B) into ∆(U∗∅). By the
way we constructed the edge set, it is enough to show that every slice ∆(BJ |−J :t) of the
boundary can be completely matched into the corresponding internal slice ∆(U∗∅|−J :t).
Fix some nonempty J ⊆ [m] and t ∈ Rm−|J |

+ . By Hall’s Theorem (see Section 4.3.3) it is
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g(m)ε′

k

k

g(m)ε′
kk

x2

x1

U{1,2}

U∅

U{1}

U{2}

U∅
⋆

B{1,2},1 B⋆
{1,2},1

B{1},1 B⋆
{1},1

B{1,2},2

B⋆
{1,2},2

B{2},2

B⋆
{2},2

Figure 4.5: The discretization of the allocation space and the structure of graph G used in the
proof of Theorem 4.3, for m = 2 items. The space U∅ where SJA sells at least one item (coloured
grey) does not properly align with the ε′-discretization grid so we have to take a cover U∗∅ (outlined
with the thick line, green in the colour version of this thesis). The boundaries Bj ∪ B∗j have width
k+g(m)ε′. The one on the right (perpendicular to the vertical axis) consists of ε′-cubes holding colour
1 (blue at the colour version of the thesis) and the one at the top colour 2 (red). Edges run from
every internal ε′-cube, vertically towards the red exterior and horizontally towards the blue exterior.
Notice, however, how the cube within the allocation subspace U{1} has only horizontal (blue) edges
running out of it, since it is not allowed to use colour 2 (red). That is due to the fact that item 2 is
not sold within U{1}.
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enough to prove that for any family of sets of {Tj}j∈J of lattice points Tj ⊆ ∆(BJ,j|−J :t):

∑
j∈J
|Tj| ≤ |

⋃
j∈J

N(Tj)|.

We will prove the stronger

∑
j∈J
|Tj| ≤ |

⋃
j∈J

N(Tj) ∩ U∅|−J :t|,

that is, we will just count neighbours in the initial set U∅ and not the cover U∗∅. The
continuous analogue of this is to take Tj’s be subsets of BJ,j|−J :t and consider the
natural extension of the neighbour function N when we now have a infinite graph of
edges

{
(x,y)

∣∣∣ x ∈ UJ |−J :t ∧ y ∈ BJ |−J :t ∧ x−j = y−j for some j ∈ J
}

Let
S = UJ |−J :t \

⋃
j∈J

N(Tj)

be the set of points not being neighbours of any node in ∪j∈JTj of the boundary. Then
by (4.30) it is enough to show that

∑
j∈J
|Tj| ≤ k

∑
j∈J

∣∣∣Sj∣∣∣ ,
where Sj = S[m]\{j}. Every point in the boundary BJ,j|−J :t that has neighbours in⋃
j∈J N(Tj) projects (with respect to j) inside Sj. But, for any point y in Tj the

only other points that can have the same projection with respect to coordinate j are
all points of the line segment of BJ,j|−J :t which is parallel to the j-axis and passes
through y, and this segment has length k.

Combining the existence of the above two matchings, a straightforward use of the
classic Cantor-Bernstein theorem from Set Theory ensures the existence of a matching
in graph G that completely matches both ∆(U∗∅) and ∆(B). But as we discussed before,
this means that U∗∅ is properly colourable and thus, this colouring induces a feasible dual
solution. Let’s denote this solution by zj(x), j ∈ [m] and also let u(x) be the primal
solution given by SJA, i.e. u is the utility function of the SJA mechanism. To prove
the optimality of u, we will take advantage of the approximate complementarity: we
claim that this primal-dual pair of solutions satisfies the approximate complementarity
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conditions in Lemma 3.2 for ε = g(m)m(m+ 1) · ε′:

u(x) ·
m+ 1−

∑
j∈[m]

∂zj(x)
∂xj

 ≤ ε (4.31)

−u(0,x−j) · zj(0,x−j) ≤ ε (4.32)

u(1,x−j) · (zj(1,x−j)− 1) ≤ ε (4.33)

zj(x) ·
(

1− ∂u(x)
∂xj

)
≤ ε, (4.34)

If that is true, then the proof of Theorem 4.3 is complete, since by the approximate
complementarity Lemma 3.2 the primal and dual objectives differ by at most (3m +
1)ε = (3m+ 1)g(m)m(m+ 1)ε′ and if we take the limit of this as ε′ → 0, these values
must be equal. So let us prove that (4.31)–(4.34) indeed hold.

Condition (4.32) is satisfied trivially, since both the primal and the dual variables
are nonnegative. Regarding (4.33), for any line parallel to some axis j the length
of its segment intersecting the boundary B ∪ B∗ (which is the one contributing the
critical colours j to that direction) is k + g(m)ε. So, given that the derivative of
zj(x) in sections coloured with j is m+ 1 we can upper-bound the value of zj(1,xj) by
(k+g(m)ε′)(m+1) = 1+g(m)(m+1)ε′. This means that zj(1,xj)−1 ≤ g(m)(m+1)ε′

and given the fact that the utility function has the property that u(x) ≤ m (because
its derivatives are at most 1 at every direction), we finally get the desired

u(1,x−j) · (zj(1,x−j)− 1) ≤ g(m)m(m+ 1)ε′ = ε.

For condition (4.31), assume that u(x) > 0 (otherwise it is satisfied). That means
that SJA sells at least one item, thus x ∈ U∅ ⊆ U

∗
∅; but U

∗
∅ is completely matched,

thus all points of U∗∅ are coloured with some colour in [m] (not with colour 0); this is
equivalent to the fact that some derivative of the zj functions is m + 1 and all others
are zero, meaning that the corresponding slack variable m + 1 −∑j∈[m] ∂zj(x)/∂xj is
zero.

Finally, for condition (4.34), fix some direction j ∈ [m] and assume that ∂u(x)/∂xj 6=
1 (otherwise the condition is satisfied). SJA is deterministic, so it must be that
∂u(x)/∂xj = 0, i.e. item j is not allocated. That means that x belongs to a sub-
domain UJ with j /∈ J , and the same is true for all points before it parallel to axis j
(that is, all points (t,x−j) with t ∈ [0, xj]). Thus, by the way that the edge set E of the
graph G was defined, x’s ε′-hypercube, as well as all hypercubes before it and parallel
to axis j, cannot have been coloured with colour j unless they happen to intersect with
a neighbouring sub-domain UJ∗ with j ∈ J∗. But it is a simple geometric argument
to see that point (xj − ε′m,x−j) is at distance at least ε′m√

|J∗|
≥ ε′m√

m
=
√
mε′ below the

boundary ∑j∈J∗ xj = p|J∗| of UJ∗ (since we already know that x is below it), which
is exactly the diameter of the ε-hypercubes. So, at most m such hypercubes below
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x’s could intersect with UJ∗ , and thus be coloured with colour j, meaning that zj(x)
cannot have increased more than (m+1)ε′ · (m+1) from zero. This proves that indeed

zj(x)(1− ∂u(x)/∂xj) = zj(x) ≤ (m+ 1)2ε′ ≤ ε.
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Chapter 5

The Case of Two Items

In this chapter we focus on the case of a seller with only two goods facing an (additive)
bidder whose values for the items come from independent (but not necessarily identical)
distributions. The restriction in the number of items will allow us for more flexibil-
ity with respect to the distributional priors, going this time way beyond the uniform
valuations of Chapter 4. We consider distributions supported over closed intervals of
the form [0, b], since we believe this to demonstrate greater flexibility: most results for
infinite supports [0,∞) can be recovered simply by taking b→∞, while the inverse is
not true. For example, as we will see in Corollary 5.2, for two goods with values fol-
lowing the (truncated) exponential distribution over [0, 1], the optimal mechanism is a
randomized one, contradicting the case of the unbounded support where from the work
of Daskalakis et al. [25] we know that the simple, deterministic full-bundling selling
mechanism is optimal. Here, as in the previous Chapter 4, we are primarily inter-
ested in exact optimality results, although a discussion of an interesting approximation
technique which we refer to as convexification is being also made in Section 5.5.

Although the conditions that the probability distributions must satisfy are quite
general, they leave out a large class of distributions. For example, they do not apply
to power-law distributions with parameter α > 2. In other words, this work goes some
way towards the complete solution for arbitrary distributions for two items, but the
general problem is still open. We opted towards simple conditions rather than full
generality, but we believe that extensions of our method can generalize significantly
the range of distributions; we expect that a proper “ironing” procedure will enable our
technique to resolve the general problem for two items.

We introduce general but simple and clear, closed-form distributional conditions
that can guarantee optimality and immediately give the form of the revenue-maximizing
selling mechanism (its payment and allocation rules), for the setting of two goods with
valuations distributed over bounded intervals (Theorem 5.1). For simplicity and a
clearer exposition we study distributions supported over the real unit interval [0, 1].
By scaling, the results generalize immediately to intervals that start at 0, but more
work would be needed to generalize them to arbitrary intervals. We use the closed
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forms to get optimal solutions for a wide class of distributions satisfying certain simple
analytic assumptions (Theorem 5.2 and Section 5.4.2). As useful examples we provide
exact solutions for families of monomial (∝ xc) and exponential (∝ e−λx) distributions
(Corollaries 5.1 and 5.2 and Section 5.4.2), and also near-optimal results for power-law
(∝ (x+ 1)−α) distributions (Section 5.5). This last approximation is an application of
a more general result (Theorem 5.3) involving the relaxation of some of the conditions
for optimality in the main Theorem 5.1; the “solution” one gets in this new setting
might not always correspond to a feasible selling mechanism, however it still provides
an upper bound on the optimal revenue as well as hints as to how to design a well-
performing mechanism, by “convexifying” it into a feasible mechanism (Section 5.5).
Particularly for the family of monomial distributions it turns out that the optimal
mechanism is a very simple deterministic mechanism that offers to the seller a menu
of size complexity [39] just 4: fixed prices for each one of the two items and for their
bundle, as well as the option of not buying any of them. For the rest of the distributions
randomization is essential for optimality, as is generally expected in such problems of
multidimensional revenue maximization (see e.g. [41, 66, 25]).

Techniques The main result of this chapter (Theorem 5.1) is proven by utilizing
the duality framework we developed in Chapter 3 for revenue maximization, and in
particular using complementarity: the optimality of the proposed selling mechanism is
shown by verifying the existence of a dual solution with which they satisfy together the
required complementary slackness conditions of the duality formulation. For clarity we
state the main duality tools adapted to our two-item case in Section 5.2. Constructing
these dual solutions explicitly seems to be a very challenging task and in fact there
might not even be a concise way to do it, especially in closed-form. So instead we just
prove the existence of such a dual solution, like we did in the previous Chapter 4, but
here using a max-flow min-cut argument instead as main tool (Lemma 5.3, Figure 5.2).
This is, in a way, an abstraction of the technique followed in Chapter 4, which was based
on Hall’s theorem for bipartite matchings. Since here we are dealing with general and
non-identical distributions, this kind of refinement is essential and non-trivial, and in
fact forms the most technical part of the chapter. Our approach has a strong geometric
flavour, enabled again by the notion of the deficiency (see previous Section 4.3.1) of a
two-dimensional body (Lemma 5.2), which is inspired by classic matching theory [64,
51].

5.1 The Model

As we mentioned in the introduction, in this chapter we assume two independently
distributed goods with types x1, x2 following distributions F1, F2, respectively, with
absolutely continuous densities f1, f2 over the unit interval I, respectively. We now
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present the conditions on the probability distributions which enable our technique to
provide a closed-form of the optimal auction.

Assumption 5.0. The density functions f1, f2 are bounded from below, except for
small values of xi; in particular, we assume that there exists some small ε such that
fi(xi) > ε, for every xi > ε.

Assumption 5.1. The probability distributions F1, F2 are such that functions hf1,f2(x)−
f2(1)f1(x1) and hf1,f2(x)− f1(1)f2(x2) are nonnegative, where

hf1,f2(x) ≡ 3f1(x1)f2(x2) + x1f
′
1(x1)f2(x2) + x2f

′
2(x2)f1(x1). (5.1)

Function hf1,f2 will also be assumed to be absolutely continuous with respect to each
of its coordinates.

We will drop the subscript f1, f2 in the above notations whenever it is clear which
distributions we are referring to. Assumption 5.1 is a slightly stronger condition than
the common regularity assumption h(x) ≥ 0 (see Equation (2.17)) in the economics
literature for multidimensional auctions. In fact, Manelli and Vincent [53] make the
even stronger assumption that for each item j, xjfj(xj) is an increasing function. Even
more recently, that assumption has also been deployed by Wang and Tang [79] in a two-
item setting as one of their sufficient conditions for the existence of optimal auctions
with small-sized menus.

Strengthening the regularity condition h(x) ≥ 0 to that of Assumption 5.1 is essen-
tially only used as a technical tool within the proof of Lemma 5.2, and as a matter of
fact we don’t really need it to hold in the entire unit box I2 but just in a critical sub-
region D1,2 which corresponds to the valuation subspace where both items are sold with
probability 1 (see Figure 5.1 and Section 5.3.2). The same is true for Assumption 5.0,
which is used in the proof of Lemma 5.3. As mentioned earlier in the Introduction,
we introduce these technical conditions in order to simplify our exposition and enforce
the clarity of the techniques, but we believe that a proper “ironing” [58] process can
probably bypass these restrictions and generalize our results.

The critical Assumption 5.1 is of course satisfied by all distributions considered in
the results of this paper, namely monomial ∝ xc for any power c ≥ 0 (Corollary 5.1),
exponential ∝ e−λx with rates λ ≤ 1 (Corollary 5.2), power-law ∝ (t + 1)−α with
parameters α ≤ 2 (Example 2), as well as combinations of these (see Example 1).
However, there is still a large class of distributions not captured by Assumption 5.1 as
it is, e.g. exponential with rates larger than 1, power-law with parameters greater than
2 and some beta-distributions (take, for example, ∝ x2(1−x)2). See Footnote 2 for an
alternative condition that can replace Assumption 5.1.
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5.2 The Primal and Dual Programs

The major underlying tool to prove the main result in this chapter, Theorem 5.1, will
be our duality framework of Chapter 3. For ease of reference and completeness, we
briefly present here the formulation specialized for our case of two items. As we did
in Chapter 4, and discussed in Section 3.2.2, we will again further relax the primal
Program (3.1) by dropping the positive derivatives constraints.

Remember that the revenue optimization problem we want to solve is

maximize R(u;F1 × F2) ≡
∫ 1

0

∫ 1

0

(
∂u(x)
∂x1

+ ∂u(x)
∂x1

− u(x)
)
f1(x1)f2(x2) dx

over the space of absolutely continuous functions u : I2 −→ R+ having the properties

∂u(x)
∂x1

,
∂u(x)
∂x2

≤ 1, (5.2)

for a.e. x1, x2 ∈ I, and the dual becomes

minimize
∫ 1

0

∫ 1

0
z1(x) + z2(x) dx

over the space of absolutely continuous functions z1, z2 : I2 −→ R+ with

zj(0, x−j) = 0, j = 1, 2, (5.3)

zj(1, x−j) ≥ fj(1)f−j(x−j), j = 1, 2, (5.4)
∂z1(x)
∂x2

+ ∂z2(x)
∂x2

≤ h(x). (5.5)

for a.e. x1, x2 ∈ I, where h is defined in (5.1).
Intuitively, every dual solution zj must start at zero and grow all the way up to

fj(1)f−j(x−j) while travelling in interval I, in a way that the sum of the rate of growth
of both z1 and z2 is never faster than the right hand side of (5.5). In Chapter 3 we
showed that indeed these two programs satisfy both weak duality, i.e. for any feasible
u, z1, z2 we have

R(u;F1 × F2) ≤
∫ 1

0

∫ 1

0
z1(x) + z2(x) dx

as well as complementary slackness, in the form of the even stronger following form of
ε-complementarity:

Lemma 5.1 (Complementarity for two items). If u, z1, z2 are feasible primal and dual
solutions, respectively, ε > 0 and the following complementarity constraints hold for
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a.e. x ∈ I2,

u(x)
(
h(x)− ∂z1(x)

∂x1
− ∂z2(x)

∂x2

)
≤ εf1(x1)f2(x2), (5.6)

u(1, x−j) (zj(1, x−j)− fj(1)f−j(x−j)) ≤ εfj(1)f−j(x−j), j = 1, 2, (5.7)

zj(x)
(

1− ∂u(x)
∂xj

)
≤ εf1(x1)f2(x2), j = 1, 2, (5.8)

where h is defined in (5.1), then the values of the primal and dual programs differ by
at most 7ε. In particular, if the conditions are satisfied with ε = 0, both solutions are
optimal.

5.3 Sufficient Conditions for Optimality

This section is dedicated to proving the main result of the chapter:

Theorem 5.1. If there exist decreasing, concave functions s1, s2 : I → I, with
s′1(t), s′2(t) > −1 for all t ∈ I, such that for almost every x1, x2 ∈ I

s1(x2)f1(s1(x2))
1− F1(s1(x2)) = 2 + x2f

′
2(x2)

f2(x2) and s2(x1)f2(s2(x1))
1− F2(s2(x1)) = 2 + x1f

′
1(x1)

f1(x1) , (5.9)

then there exists a constant p ∈ [0, 2] such that
∫
D
h(x) dx1 dx2 = f1(1) + f2(1) (5.10)

where D is the region of I2 enclosed by curves1 x1 + x2 = p, x1 = s1(x2) and
x2 = s2(x1) and including point (1, 1), i.e.

D = {x ∈ I | x1 + x2 ≥ p ∨ x1 ≥ s1(x2) ∨ x2 ≥ s2(x1)} ,

and the optimal selling mechanism is given by the utility function

u(x) = max {0, x1 − s1(x2), x2 − s2(x1), x1 + x2 − p} . (5.11)

In particular, if p ≤ min {s1(0), s2(0)}, then the optimal mechanism is the deter-
ministic full-bundling with price p.

1See Figure 5.1.
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Notice that for any s ∈ I we have
∫ 1

s
h(x) dx1 =

∫ 1

s
3f1(x1)f2(x2) + x1f

′
1(x1)f2(x2) + x2f

′
2(x2)f1(x1) dx1

= 3f2(x2)(1− F1(s)) + f2(x2)
∫ 1

s
x1f

′
1(x1) dx1 + x2f

′
2(x2)(1− F1(s))

= 3f2(x2)(1− F1(s)) + f2(x2)
(
[x1f1(x1)]1s − (1− F1(s))

)
+ x2f

′
2(x2)(1− F1(s))

= 2f2(x2)(1− F1(s)) + f2(x2)(f1(1)− sf1(s)) + x2f
′
2(x2)(1− F1(s))

= (1− F1(s))f2(x2)
[
2 + x2f

′
2(x2)

f2(x2) −
sf1(s)

1− F1(s)

]
+ f1(1)f2(x2)

which means that an equivalent way of looking at (5.9) is, more simply, by
∫ 1

s1(x2)
h(x) dx1 = f1(1)f2(x2) and

∫ 1

s2(x1)
h(x) dx2 = f2(1)f1(x1). (5.12)

5.3.1 Flows

To carry out the proof of Theorem 5.1 we will need to use some basic notions and
property of flow networks, and we very briefly present them here for completeness.
Assume a directed graph G = (V,E), together with a capacity function c : E −→ R+

over the edges. Also, there are two special nodes s, t ∈ V , called the source and sink
(or destination), respectively. The in-degree of s and the out-degree of t are both zero.
Then, a flow over G is a function f : E −→ R+ that satisfies the following properties

• f(e) ≤ c(e) for all e ∈ E

• ∑v′:(v′,v)∈E f(v′, v) = ∑
v′:(v,v′)∈E f(v, v′) for all v ∈ V \ {s, t}.

The first properties requires that we cannot send more flow through an edge than
its capacity, while the second makes sure that the flow is conserved throughout the
network, i.e. that for every node its total incoming flow equals its total outgoing flow.
Then, the total flow of G is sum of the flows leaving s (or arriving into t, since these
two must be equal) ∑v∈N(s) f(s, v).

An (s− t) cut of G is a bipartition S ∪ T = V of the node set such that s ∈ S and
t ∈ T . Some times we refer to set S as the left set and to T as the right one. Then the
value or capacity of a cut (S, T ) is simply the sum of the capacities of the edges going
from S to T : ∑v∈S,v′∈T :(v,v′)∈E c(v, v′).

The well-known max-flow min-cut theorem states that the maximum total flow in
a graph equals the minimum value of a cut of it. In particular, the capacity of every
feasible cut is an upper bound to any feasible flow.
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s2(x1) = x2

s1(x2) = x1x1 + x2 = p
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1

D̄

D1,2

(x̂1, x̂2)

D1

D2

Figure 5.1: The type space partitioning of the optimal selling mechanism for two independent
items, one following a uniform distribution and the other an exponential with parameter λ = 1. Here
s1(t) = (2− t)/(3− t), s2(t) = 2−W (2e) ≈ 0.625 and p ≈ 0.787. In region D1 (light grey) item 1 is
sold deterministically and item 2 with a probability of −s′1(x2), in D2 (light grey) only item 2 is sold
and region D1,2 (dark grey) is where the full bundle is sold deterministically, for a price of p.

5.3.2 Partitioning of the Type Space

Due to the fact that the derivatives of functions sj in Theorem 5.1 are above −1, each
curve x1 = s1(x2) and x2 = s2(x1) can intersect the full-bundle line x1 +x2 = p at most
at a single point. So let x∗2 = x∗2(p), x∗1 = x∗1(p) be the coordinates of these intersections,
respectively, i.e. s1(x∗2) = p− x∗2 and s2(x∗1) = p− x∗1. If such an intersection does not
exist, just define x∗2 = 0 or x∗1 = 0.

The construction and the optimal mechanism given in Theorem 5.1 then gives rise
to the following partitioning of the type space I2 (see Figure 5.1):

• Region D̄ = I2 \D where no item is allocated

• Region D1 = {x ∈ I2 | x1 ≥ s1(x2) ∧ x2 ≤ x∗2} where item 1 is sold with proba-
bility 1 and item 2 with probability s′1(x2) for a price of s1(x2)− x2s

′
1(x2)

• Region D2 = {x ∈ I2 | x2 ≥ s2(x1) ∧ x1 ≤ x∗1} where item 2 is sold with proba-
bility 1 and item 1 with probability s′2(x1) for a price of s2(x1)− x1s

′
2(x1)

• Region D1,2 = D \D1 ∪D2 = {x ∈ I2 | x1 + x2 ≥ p ∧ x1 ≥ x∗1 ∧ x2 ≥ x∗2} where
both items are sold deterministically in a full bundle of price p.
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Under this decomposition, by (5.12):

∫
D1
h(x) dx1 dx2 =

∫ x∗2

0

∫ 1

s1(x2)
h(x) dx1 dx2 = f1(1)F2(x∗2)

so expression (5.10) can be written equivalently as
∫
D1,2

h(x) dx1 dx2 = f1(1)(1− F2(x∗2)) + f2(1)(1− F1(x∗1)). (5.13)

Our approach into proving Theorem 5.1 will be to show the existence of a pair of
dual solutions z1, z2 with respect to which the utility function u given by the theorem
indeed satisfies complementarity. Notice here the existential character of our technique:
our duality approach offers the advantage to use the proof of just the existence of such
duals, without having to explicitly describe them and compute their objective value
in order to prove optimality, i.e. that the primal and dual objectives are indeed equal.
Also notice that the utility function u given by Theorem 5.1 is convex with nonnegative
derivatives by construction, so in case someone shows optimality for u in the relaxed
primal duality setting, then u must also be optimal among all feasible mechanisms.

Define function W : I2 → R+ by

W (x) =

h(x), if x ∈ D,

0, otherwise,

where D is defined in Section 5.3.2 (see Figure 5.1). If one could decompose W into
functions w1, w2 : I2 → R+ such that

w1(x) + w2(x) = W (x) (5.14)∫ 1

0
wj(x) dxj = fj(1)f−j(x−j), j = 1, 2, (5.15)

for all x ∈ I, and wj is almost everywhere continuous with respect to its j-th coordinate,
then by defining

zj(x) =
∫ xj

0
wj(t, x−j) dt

we’ll have

∂z1(x)
∂x1

+ ∂z2(x2)
∂x2

=

h(x), for x ∈ D,

0, otherwise,
(5.16)

zj(0, x−j) = 0, j = 1, 2, (5.17)

zj(1, x−j) = fj(1)f−j(x−j), j = 1, 2. (5.18)

If the requirements of Theorem 5.1 hold, then it is fairly straightforward to get such
a decomposition in certain regions. In particular, we can set w1 = w2 = 0 in I2 \ D,
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w1 = W = h and w2 = 0 in D1 and w2 = W = h and w1 = 0 in D2. Then, by (5.12),
it is not difficult to see that indeed conditions (5.14)–(5.15) are satisfied. However, it
is highly non-trivial how to create such a matching in the remaining region D1,2 and
that is what the proof of Lemma 5.3 achieves, with the assistance of the geometric
Lemma 5.2, in the remaining of this section. This is the most technical part of the
current chapter.

In any case, if we are able to get such a decomposition, by the previous discussion
that would mean that functions z1, z2 : I2 → R+ are feasible dual solutions: it is
trivial to verify that properties (5.16)–(5.18) satisfy the dual constraints (5.3)–(5.5).
But most importantly, the equalities in properties (5.16)–(5.18) and the way w1 and
w2 are defined in regions D1 and D2 tell us something more: that this pair of solutions
would satisfy complementarity with respect to the primal given in (5.11) and whose
allocation is analyzed in detail in Section 5.3.2, thus proving that this mechanism is
optimal and thus establishing Theorem 5.1.

5.3.3 Deficiency

Now recall the notion of deficiency from Definition 4.3, adapted to our two-dimensional
setting: for any body S ⊆ I2 define its deficiency (with respect to distributions f1, f2)
to be

δ(S) ≡
∫
S
h(x) dx− f2(1)

∫
S1
f1(x1) dx1 − f1(1)

∫
S2
f2(x2) dx2,

where S1, S2 denote S’s projections to the x1 and x2 axis, respectively. Then, the
following analogue to Theorem 4.3 from the uniform setting of Chapter 4 can be shown,
though with a different proof technique:

Lemma 5.2. If the requirements of Theorem 5.1 hold, then no body S ⊆ D1,2 has
positive deficiency.

Proof. To get to a contradiction, assume that there is body S ⊆ D1,2 with δ(S) > 0.
First, we’ll show that without loss S can be assumed to be upwards closed. Intuitively,
we’ll show that one can push mass of S to the right or upwards, without reducing its
deficiency. By Assumption 5.1 function h(x) − f2(1)f1(x1) is nonnegative. Then, if
there exists a nonempty horizontal line segment S|x2:t of S at some height x2 = t, then
we can assume that this line segment fills the entire available horizontal space of D1,2:
if that was not the case, and there existed a small interval [α, β] × t that was not in
S, then we could add it to it, not increasing the projection towards the x2-axis (it is
already covered by the other existing points at x2 = t) and the projection towards the
x1-axis is increased at most by β − α, leading to a change to the overall deficiency by
at most

∫ β
α h(x) dx1 − f2(1)

∫ β
α f1(x1) dx1, which is nonnegative2.

2We must mention here that the assumption of the nonnegativity of h(x) − f2(1)f1(x1) could be
replaced by that of h(x) − f2(1)f1(x1) being increasing with respect to x1 and the argument would
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So S can be assumed to be the intersection ofD1,2 with a box, i.e. S = [t1, 1]×[t2, 1]∩
D1,2, where t1 ≥ x∗1 and t2 ≥ x∗2. This also means that its projections are S1 = [t1, 1]
and S2 = [t2, 1]. Now consider the lowest horizontal slice S|x2:t2 of S. It obviously
lies within D1,2. But from condition (5.12) so do all horizontal line segments of the
form [s1(x2), 1] for any x2 ∈ [x∗2, t2]: s1(x2) is decreasing and specifically less steeply
than the line −x2 + p which is the boundary of D1,2. So, by adding all these segments
to S we won’t increase the projections towards the x1-axis (these are covered already
by S|x2:t2 , which has to be a superset of [s1(t2), 1], otherwise it would have a negative
deficiency, see (5.12)) and the new projections towards the x2-axis are dominated by
the increase of the area of S (this segments have nonnegative deficiency). So, S can be
assumed to project in the entire boundaries [x∗1, 1] and [x∗2, 1] of D1,2 and thus, since h
is nonnegative, S can be assumed to fill the entire D1,2 region. But by the definition
of price p in Theorem 5.1, δ(D1,2) = 0 which concludes the proof.

5.3.4 Dual Solution and Optimality

Notice here that Theorem 5.1 ensures the existence of a full-bundling price in (5.10).
This needs to be proven. Indeed, quantity

∫
D h(x) dx continuously (weakly) increases

as p decreases, and for p = 0
∫
D
h(x) dx =

∫ 1

0

∫ 1

0
3f1(x1)f2(x2) + x1f

′
1(x1)f2(x2) + yf ′2(x2)f1(x1) dx1 dx2

= 3 + (f1(1)− 1) + (f2(1)− 1) = 1 + f1(1) + f2(1)

> f1(1) + f2(1)

while for p = x̂1 + x̂2, where (x̂1, x̂2) is the unique point of intersection of the curves
x2 = s1(x1) and x1 = s2(x2) in I2 (such a point certainly exists because s1 and s2 are
defined over the entire I),

∫
D1,2

h(x) dx =
∫ 1

x̂2

∫ 1

x̂1
h(x) dx

≤
∫ 1

x̂2

∫ 1

s1(x2)
h(x) dx

=
∫ 1

x̂2
f1(1)f2(x2) dx2

= f1(1)(1− F2(x̂2))

≤ f1(1)(1− F2(x̂2)) + f2(1)(1− F1(x̂1)),

still cary through: we can move entire columns of S to the right, pushing elements horizontally;
the projection towards axis x2 again remains unchanged, and because of the monotonicity of h(x)−
f2(1)f1(x1), the overall deficiency will not decrease since we are integrating over higher values of x1.
This means that the monotonicity of h(x) − fj(xj)j−j(1) with respect to xj can replace its non-

negativity in the initial Assumption 5.1 (while still maintaining the regularity requirement of h(x)
being nonnegative) without affecting the main results of this chapter, namely Theorems Theorems 5.1
to 5.3.
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the first inequality holding because h is nonnegative and s1(x2) ≤ s1(x̂2) = x̂1 (s1 is
decreasing), and the second equality by substituting (5.12), and from (5.13) this means
that

∫
D h dx ≤ f1(1) + f2(1).

Combining the above, indeed there must be a p ∈ [0, x̂1 + x̂2] such that
∫
D h dx =

f1(1) + f2(1). In fact, using this argument, if for p = min {s1(0), s2(0)} it is
∫
D h dx <

f1(1) + f2(1) then p must go below this value to get a solution, meaning that the full-
bundling region will cover the rest of the regions D1 and D2, i.e. D = D1,2, and the
mechanism defined by (5.11) is a deterministic full-bundling.

The following lemma will complete the proof of Theorem 5.1. It is the most technical
part of this chapter, and utilizes a max-flow min-cut argument in order to prove the
existence of a feasible dual pair z1, z2 that satisfies the complementarity conditions
with respect to the utility function given by Theorem 5.1, thus establishing optimality.
It is inspired by the bipartite matching approach in Chapter 4 where Hall’s theorem
is used in order to prove existence, in the special case of uniformly distributed items.
Here we need to abstract and generalize our approach in order to incorporate general
distributions in the most smooth way possible. The proof has a strong geometric
flavour, which is achieved by utilizing the notion of deficiency that was introduced in
Section 5.3.3 and using Lemma 5.2.

Lemma 5.3. Assume that the conditions of Theorem 5.1 hold. Then for arbitrary
small ε > 0, there exist feasible dual solutions z1, z2 which are ε-complementary to the
(primal) u given by (5.11). Therefore, the mechanism induced by u is optimal.

Proof. Following the discussion in Section 5.2, we would like to decompose W into the
desired functions w1 and w2 within D1,2, i.e. such that they satisfy (5.14)–(5.15). In
fact, we are aiming for ε-complementarity, so we can relax conditions (5.15) a bit:

∫ 1

0
wj(x) dxj ≤ fj(1)f−j(x−j) + ε′ (5.19)

To be precise, the ε-complementarity of Lemma 3.2 dictates that regarding these condi-
tions we must show that for a.e. x ∈ D1,2 property (5.7) holds (conditions (5.6) and (5.8)
are immediately satisfied with strong equality, by (5.16) and the fact that within D1,2

both items are sold deterministically with probability 1.). But since u(x) ≤ x1 +x2 ≤ 2
for all x1, x2 ∈ I (u’s derivatives are at most 1 with respect to any direction) and by
Assumption 5.0 exists M > 0 such that f1(1)f2(x2), f2(1)f1(x1) ≥ M for all x ∈ D1,2,
indeed (5.19) is enough to guarantee ε complementarity if one ensures ε′ ≤ εM/2. So,
the remaining of the proof is dedicated into constructing nonnegative, a.e. continuous
functions w1 and w2 over D1,2, such that w1 + w2 = h and (5.19) are satisfied.

We will do that by constructing an appropriate graph and recovering w1 and w2 as
“flows” through its nodes, deploying the min-cut max-flow theorem to prove existence.
To start, we pick an arbitrary small δ > 0 and discretize I2 into a lattice of δ-size
boxes [(i − 1)δ, iδ] × [(j − 1)δ, jδ], where i, j = 1, 2, . . . , 1/δ, selecting δ such that 1/δ
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is an integer. Denote the intersection of such a box with D1,2 by Bi,j. Also, let B1
i

denote the projection of all nonempty Bi,j’s, as j ranges, towards the x1-axis and B2
j

towards the x2-axis, as i ranges. Note that these are well-defined in this way, since
by the geometry of region D1,2 two nonempty Bi,j, Bi′,j′ will have the same vertical
projection if i = i′ and the same horizontal if j = j′. Also, it is a simple fact to observe
that all B1

i and B2
j are single-dimensional real intervals of length at most δ.

Now let us construct a directed graph G = (V,E), together with a capacity function
c(e) for all edges e ∈ E. Initially, for any pair (i, j) such that Bi,j has positive (two-
dimensional Lebesgue) measure we insert a node v(i, j) in V . We’ll call these nodes
internal and we’ll denote them by Vo. Also, for any internal node v(i, j) we add nodes
v1(i) and v2(j) corresponding to entire columns and rows, calling them column and row
vertices and denoting them by V1 and V2, respectively. Finally there are two special
nodes, a source σ and a destination τ . From the source to all internal nodes v = v(i, j)
we add an edge (σ, v) with capacity equal to the area of Bi,j under h, i.e. c(σ, v) =∫
Bi,j

h(x) dx. From any internal node v = v(i, j) to its external column and row nodes
v1 = v1(i) and v2 = v2(j) we add edges with capacities c(v, v1) = c(v, v2) = c(σ, v) equal
to the internal node’s incoming edge capacity from the source. Finally, for all external
nodes v1(i) ∈ V1 and v2(j) ∈ V2 we add edges towards the destination τ with capacities
c(v1, τ) = f2(1)

∫
B1
i
f1(x1) dx1 and c(v2, τ) = f1(1)

∫
B2
j
f2(x2) dx2, respectively. The

structure of graph G is depicted in Figure 5.2.
As a first observation, notice that the maximum flow that can be sent from σ within

the graph is
∫
D1,2

h(x) dx dy and the maximum flow that τ can receive is

f2(1)
∫ 1

x∗1

f1(x1) dx1 + f1(1)
∫ 1

x∗2

f2(x2) dx2

(remember that the projection of D1,2 to the x1-axis is [x∗1, 1] and to the x2-axis [x∗2, 1]).
But, from the way the entire region D is constructed, we know that the above two
quantities are equal (see (5.13)). Let’s denote this value by ψ. Next, we will prove that
indeed one can create a feasible flow through G that achieves that maximum value ψ.
From the max-flow min-cut theorem, it is enough to show that the minimum (σ, τ)-cut
of G has a value of at least ψ. To do that, we’ll show that (σ, V \ {σ}) is a minimum
cut of G.

Indeed, let (S, V \S) be a (σ, τ)-cut of G. First, let there be an edge (v, vj) crossing
the cut, i.e. v ∈ S and vj /∈ S, with v internal node and vj external. Then, by moving
v at the other side of the cut, i.e. removing it from S, we would create at most a new
edge contributing to the cut, namely (σ, v) but also destroy at least one edge (v, vj).
Since the capacities of these two edges are the same, the overall effect would be to get
a new cut with weakly smaller value. So, from now on we can assume that for all edges
(v, vj) of G, if v ∈ S then also vj ∈ S. Under this assumption, if So = Vo ∩ S denotes
the set of internal nodes belonging at the left side of the cut, for every v ∈ So all edges
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∫
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h(x)

∫
Bi,j
h(x)

f2(1)
∫
B1

i
f1(x1)

∫
Bi,j
h(x)

f1(1)
∫
B2

j
f2(x2)

Bi,j′

∫
Bi,j′
h(x)

∫
Bi,j′
h(x)

B2
j′

∫
Bi,j′
h(x)

f1(1)
∫
B2

j′
f2(x2)

σ

τ

1

1

0

x∗
2

x∗
1

x1 + x2 = p

j

j′

i

Figure 5.2: The graph G in the proof of Lemma 5.3. Every internal node Bi,j of region D1,2 can
receive at most

∫
Bi,j

h(x) dx flow from the source node σ and can send at most that amount to each
one of its neighbouring external nodes B1

i and B2
j . Every external node B1

i and B2
j is connected to

the destination τ with edges of capacity f2(1)
∫
B1
i
f1(x1) dx1 and f1(1)

∫
B2
j
f2(x2) dx2, respectively.

Internal Bi,j ’s are two-dimensional intersections of δ-boxes with D1,2, while the external ones, B1
i and

B2
j are single dimensional intervals of length δ.
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(v, vj) adjacent to v will not cross the cut. However, this means that all edges (vj, τ),
where vj ∈ N(v)3, do contribute to the cut. But then, if we remove all nodes in So,
together with their neighbouring external nodes N(So) at the other side of the cut, we
increase the cut’s value by at most ∑v∈So c(σ, v) and at the same time reduce it by at
least ∑vj∈N(So) c(vj, τ). However, by the way graph G is constructed, this corresponds
to an overall increase in the cut of at least

∫
B
h(x) dx− f2(1)

∫
B1
f1(x1) dx1 − f1(1)

∫
B2
f2(x2) dx2,

where B = ∪v(i,j)∈SoBi,j is the region of D1,2 covered by the boxes of nodes in So and
B1, B2 are the projections of this body to the horizontal and vertical axis, respectively.
From Lemma 5.2 this difference must be nonpositive, thus this change results in a cut
of an even (weakly) smaller value. The above arguments show that indeed the cut that
has only σ remaining at its left side is a minimum one.

So, there must be a flow φ : E −→ R+, achieving to transfer a total value of ψ
through G (see Section 5.3.1). As we argued above though, by the construction of
G, to achieve this value of ψ, the full capacity of all edges (σ, v) as well as that of
all (vj, τ) must be used. So, this flow f manages to elegantly separate all incoming
flow φ(σ, v(i, j)) =

∫
Bi,j

h(x) dx towards an internal box of D1,2, into a sum of flows
φ(v(i, j), v1(i)) + φ(v(i, j), v2(j)) towards its external neighbours. But this is exactly
what we need in order to construct our feasible dual solution! For simplicity, denote
this incoming flow φ(i, j) and the outgoing ones φ1(i, j) and φ2(i, j), respectively. Then,
define the functions w1, w2 throughout D1,2 by

w1(x) = φ1(i, j)
φ(i, j) h(x) and w2(x) = φ2(i, j)

φ(i, j) h(x),

where Bi,j is the discretization box where point x of D1,2 belongs to. In that way,
first notice that we achieve w1 + w2 = h. Secondly, functions w1 and w2 are almost
everywhere continuous, since the values of the flows are constant within the boxes, and
our discretization is finite. The only remaining property to prove is (5.19).

Fix some height x2 = x̃2 such that this horizontal line intersects D1,2. We’ll prove
that ∫ 1

0
w1(x1, x̃2) dx1 − f1(1)f2(x̃2) ≤ ε′.

Value x̃2 falls within some interval of the discretization, let x̃2 ∈ [(j̃ − 1)δ, j̃δ] = B2
j̃
.

The average value of function f1(1)f2(x2) (with respect to x2) within this interval is

1
δ
f1(1)

∫
B2
j̃

f2(x2) dx2 = c(v2(j̃), τ)/δ

3Recall that N(v) denotes the set of neighbours of v in graph G.
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and the average value of
∫ 1

0 w1(x) dx1 is

1
δ

∫
B2
j̃

∫ 1

0
w1(x) dx1 = 1

δ

∑
i

∫
Bi,j̃

w1(x) dx = 1
δ

∑
i

φ1(i, j)
φ(i, j)

∫
Bi,j̃

h(x) dx =
∑
i

φ1(i, j̃)/δ.

But since the sum of the outgoing flows over any horizontal line of internal nodes of
the graph (here j = j̃) must equal the outgoing flow of the corresponding external
node (here v2(j̃)), the above quantities are equal. Thus, by selecting the discretiza-
tion parameter δ small enough, we can indeed make the values

∫ 1
0 w1(x1, x̃2) dx1 and

f1(1)f2(x̃2) to be ε′ close to each other. This should feel intuitively clear, and it relies
on the uniform continuity of functions f2 and h, but we also give a formal proof below:

Functions f2 and
∫ 1

0 w1(x1, x̃2) dx1 are continuous in the interval B2
j̃
, so by the Mean

Value Theorem there exist x̄2, ¯̄x2 ∈ B2
j̃
such that

∫ 1

0
w1(x1, x̄2) dx = 1

δ

∫
B2
j̃

∫ 1

0
w1(x) dx = 1

δ
f1(1)

∫
B2
j̃

f2(x2) dx2 = f1(1)f2(¯̄x2) (5.20)

Notice that both x̄2 and ¯̄x2 are δ-close to x̃2. Function f2 is uniformly continuous, so
one can pick δ small enough in order to

f1(1)f2(¯̄x2)− f1(1)f2(x̃2) ≤ ε′/2. (5.21)

In the same way, because h is uniformly continuous, we can select δ small enough so
that h(x1, x̄2)− h(x1, x̃2) ≤ ε′/3 for all x1 ∈ I, and that would give

∣∣∣∣∫ 1

0
w1(x1, x̄2) dx1 −

∫ 1

0
w1(x1, x̃2) dx1

∣∣∣∣ ≤∑
i

f1(i, j)
f(i, j)

∫
B1
i

|h(x1, x̄2)− h(x1, x̃2)| dx1

+ |x̄2 − x̃2| ‖h‖∞
≤
∑
i

∫
B1
i

|h(x1, x̄2)− h(x1, x̃2)| dx1 + δ ‖h‖∞

≤
∫ 1

0

ε′

3 dx1 + δ ‖h‖∞

≤ ε′/2, (5.22)

for choosing a small enough value for δ, since ‖h‖∞ ≡ supx∈I2 h(x) is a fixed constant
(because h is continuous). The last additive term in the first inequality accounts for
the fact that the length of the intersections of horizontal lines x2 = x̄2 and x2 = x̃2

with D1,2 may differ by |x̄2 − x̃2| (remember that the boundary of D1,2 is 45◦–line).
Finally, by plugging in inequalities (5.21) and (5.22) into (5.20) we get the desired

∣∣∣∣∫ 1

0
w1(x1, x̃2) dx1 − f1(1)f2(x̃2)

∣∣∣∣ ≤ ε′.
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5.4 Optimal Mechanisms

5.4.1 The Case of Identical Items

In this section we focus on the case of identically distributed valuations, i.e. f1(t) =
f2(t) ≡ f(t) for all t ∈ I, and we provide clear and simple conditions under which the
critical property (5.9) of Theorem 5.1 hold.

First notice that in this case the regularity Assumption 5.1 gives 3 + x1f ′(x1)
f(x1) +

x2f ′(x2)
f(x2) ≥ 0 a.e. in I2 (since f is positive) and thus tf ′(t)

f(t) ≥ −
3
2 for a.e. t ∈ I. An

equivalent way of writing this is that t3/2f(t) is increasing, which interestingly is the
complementary case of that studied by Hart and Nisan [38] for two i.i.d. items: they
show that when t3/2f(t) is decreasing, then deterministically selling in a full bundle is
optimal.

Theorem 5.2. Assume that G(t) = tf(t)/(1 − F (t)) and H(t) = tf ′(t)/f(t) give
rise to well defined, differentiable functions over I, G being strictly increasing and
convex, H decreasing and concave, with G + H increasing and G(1) ≥ 2 + H(0).
Then the requirements of Theorem 5.1 are satisfied. In particular

s(t) = G−1(2 +H(t))

and, if ∫ 1

0

∫ 1

0
h(x) dx−

∫ p

0

∫ p−x2

0
h(x) dx− 2f(1) (5.23)

is nonpositive for p = s(0) then the optimal selling mechanism is the one offering
deterministically the full bundle for a price of p being the root of (5.23) in [0, s(0)],
otherwise the optimal mechanism is the one defined by the utility function

u(x) = max {0, x1 − s(x2), x2 − s(x1), x1 + x2 − p}

with p = x∗ + s(x∗), where x∗ ∈ [0, s(0)] is the constant we get by solving

∫ s(x∗)

x∗

∫ 1

s(x∗)+x∗−x2
h(x) dx +

∫ 1

s(x∗)

∫ 1

x∗
h(x) dx = 2f(1)(1− F (x∗)). (5.24)

Proof. FunctionG is strictly monotone, thus invertible and has a range of [G(0), G(1)] =
[0, G(1)] ⊇ [0, 2 + H(0)]. By Assumption 5.1 and the previous discussion, it must be
tf ′(t)/f(t) ≥ −3/2, so 2 +H(t) ≥ 1/2 > 0 for all t ∈ I. Thus, s(t) = G−1(2 +H(t)) is
well defined and furthermore it is decreasing, since G is increasing and H decreasing.
Also, by the way s is defined we get that for all t: G(s(t)) = 2 +H(t), which is exactly
condition (5.9) of Theorem 5.1.

It remains to be shown that s is concave and that s′(t) > −1. From the definition
of s, s′(t) = H ′(t)/G′(s(t)). Function H is decreasing and concave, so H ′(t) is negative
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and decreasing, and function G is increasing and convex and s decreasing, so G′(s(t))
is positive and decreasing. Combining these we get that the ratio H ′(t)/G′(s(t)) is
decreasing, proving that s is concave. Finally, notice that since we are in a two item
i.i.d. setting, the only part of curve x2 = s(x1) that matters and may appear in the
utility of the resulting mechanism (5.11) is the one where x1 ≤ x2 (curves x2 = s(x1)
and x1 = s(x2) will intersect on the line x1 = x2), so we only have to show that s′(t) >
−1 for t ≤ s(t). Indeed, in that case G′(t) ≤ G′(s(t)), so s′(t) = H ′(t)/G′(s(t)) ≥
H ′(t)/G′(t) and thus it is enough to show that H ′(t)−G′(t) ≥ 0 which we know holds
since H +G is assumed to be increasing.

Corollary 5.1 (Monomial Distributions). The optimal selling mechanism for two
i.i.d. items with valuations from the family of distributions with densities f(t) =
(c+ 1)tc, c ≥ 0, is deterministic. In particular, it offers each item for a price of

s = c+1

√
c+ 2
2c+ 3

and the full bundle for a price of p = s+ x∗, where x∗ is the solution to (5.24).

Proof. For two monomial i.i.d. items with f1(t) = f2(t) = (c + 1)tc we have h(x) =
(c + 1)2(2c + 3)xc1xc2 ≥ 0, thus h(x) − f2(1)f1(x1) = (c + 1)2xc1 ((2c+ 3)xc2 − 1) which
is nonnegative for all x2 ≥ c

√
1/(2c+ 3) ≡ ω. So, in order to make sure that Assump-

tion 5.1 is satisfied, it is enough to show that x∗ ≥ ω because then D1,2 ⊆ [ω, 1]2. We’ll
soon show that this is indeed satisfied for all c ≥ 0.

Applying Theorem 5.2 we compute: G(t) = (c+1)tc+1

1−tc+1 which is strictly increasing and
convex in I and H(t) = c which is constant and thus decreasing and concave. Also, it
is trivial to deduce that G+H is increasing and limt→1− G(t) =∞ > 2 + c = 2 +H(0).
Then, it is valid to compute G−1(t) =

(
3+2c
2+c

)− 1
1+c and thus s(t) = c+1

√
c+2
2c+3 which is

constant.
Regarding the computation of the full-bundle price p, condition (5.24) gives rise to

quantity ∫ s

x∗

∫ 1

s+x∗−x2
xc1x

c
2 dx +

∫ 1

s

∫ 1

x∗
xc1x

c
2 dx−

2
c+ 1(1− x∗c+1),

which by plugging-in x∗ = ω and using the values of s and ω (as functions of c) one can
see that it is positive for all c ≥ 0. So, by the discussion in the beginning of Section 5.3.4
it can be deduced that the solution to (5.24) will be such that x∗ > ω.

Notice that for c = 0 the setting of Corollary 5.1 reduces to a two uniformly
distributed goods setting, and gives the well-known results of s = 2/3 and p = (4 −
√

2)/3 (see e.g. [53]). For the linear distribution f(t) = 2t, where c = 1, we get
s =

√
3/5 and p ≈ 1.091.
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Corollary 5.2 (Exponential Distributions). The optimal selling mechanism for two
i.i.d. items with valuations exponentially distributed over I, i.e. having densities f(t) =

λ
1−e−λ e

−λt, with 0 < λ ≤ 1, is the one having

s(t) = 1
λ

[
2− λt−W

(
e2−λ−λt(2− λt)

)]
and a price of p = x∗ + s(x∗) for the full bundle, where x∗ is the solution to (5.24).
Here W is Lambert’s product logarithm function4.

Proof. For two i.i.d. exponentially distributed items with f1(t) = f2(t) = λ
1−e−λ e

−λt we
have

h(x)− f2(1)f1(x1) = λ2

(eλ − 1)2 e
2−λ(x1+x2)(3− λ(x1 + x2)− eλx2)

≥ λ2

(eλ − 1)2 e
2−λ(x1+x2)(2− λ(x1 + x2))

≥ 0

for all x1, x2 ∈ I, since λ ≤ 1.
Applying Theorem 5.2 we compute: G(t) = λt

1−e−λ(1−t) which is strictly increasing
and convex in I and H(t) = −λt which is decreasing and concave. Also, G(t) +H(t) =
λte−λ(1−t)

1−e−λ(1−t) is increasing and limt→1− G(t) = ∞ > 2 = 2 + H(0). Then, it is valid to

compute G−1(t) = t−W(tet−λ)
λ

and thus s(t) = 1
λ

[
2− λt−W

(
e2−λ−λt(2− λt)

)]
.

For example, for λ = 1 we get s(t) = 2− t−W (e1−t(2− t)) and p ≈ 0.714. Inter-
estingly, to our knowledge this is the first example for an i.i.d. setting with valuations
coming from a regular, continuous distribution over an interval [0, b], where an opti-
mal selling mechanism is not deterministic. Also notice how this case of exponential
i.i.d. items on a bounded interval is different from the one on [0,∞): by [25, 30] we
know that at the unbounded case the optimal selling mechanism for two exponential
i.i.d. items is simply the deterministic full-bundling, but in our case of the bounded I
this is not the case any more.

5.4.2 Non-Identical Items

An interesting aspect of the technique of Theorem 5.2 is that it can readily be used also
for non identically distributed valuations. One just has to define Gj(t) ≡ tfj(t)/(1 −
Fj(t)) and Hj(t) = tf ′j(t)/fj(t) for both items j = 1, 2 and check again whether G1, G2

are strictly increasing and convex and H1, H2 nonnegative, decreasing and concave.
Then, we can get sj(t) = G−1

j (2 + H−j(t)) and check if sj(1) > −1 and the price
p of the full bundle can be given by (5.10). Again, a quick check of whether full

4Function W can be defined as the solution to W (t)eW (t) = t.
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bundling is optimal is to see if for p = min {s1(0), s2(0)} expression
∫ 1

0
∫ 1
0 h(x) dx −∫ p

0
∫ p−x2
0 h(x) dx− f1(1)− f2(1) is nonpositive.

Example 1. Consider two independent items, one having uniform valuation f1(t) = 1
and one exponential f2(t) = e−t

1−e−1 . Then we get that s1(t) = 2−t
3−t , s2(t) = 2−W (2e) ≈

0.625 and p ≈ 0.787. The optimal selling mechanism offers either only item 2 for a
price of s2 ≈ 0.625, or item 1 deterministically and item 2 with a probability s′1(x2)
for a price of s1(x2)− x2s

′
1(x2), or the full bundle for a price of p ≈ 0.787. You can see

the allocation space of this mechanism in Figure 5.1.

5.5 Almost Optimal Auctions

In the previous sections we developed tools that, under certain assumptions, can give a
complete closed-form description of the optimal selling mechanism. However, remember
that the initial primal-dual formulation upon which our analysis was based, assumes
a relaxed optimization problem. Namely, we dropped the convexity assumption of
the utility function u. In the results of the previous sections this comes for free: the
optimal solution to the relaxed program turns out to be convex anyway, as a result of
the requirements of Theorem 5.1. But what happens if that was not the case? The
following tool shows that even in that case our results are still applicable and very useful
for both finding good upper bounds on the optimal revenue (Theorem 5.3) as well
as designing almost-optimal mechanisms that have provably very good performance
guarantees (Section 5.5.1).

Theorem 5.3. Assume that all conditions of Theorem 5.1 are satisfied, except from
the concavity of functions s1, s2. Then, the function u given by that theorem might not
be convex any more and thus not a valid utility function, but it generates an upper
bound to the optimal revenue, i.e.

Rev(F1 × F2) ≤ R(u;F1 × F2).

In particular, this is the case if all the requirements of Theorem 5.2 hold except the
concavity of H.

Proof. The proof is a straightforward result of the duality framework (see Section 3.1.2):
By dropping only the concavity requirement of functions s1 and s2 but satisfying all
the remaining conditions of Theorem 5.1, we still construct an optimal solution to the
pair of primal-dual programs, meaning that function u produced in (5.11) maximizes
R(u;F1 × F2) over the space of all functions u : I2 −→ R+ with partial derivatives in
[0, 1] (see (5.2)); the only difference is that u might not be convex since s1, s2 might
not be concave any more. The actual optimal revenue objective Rev(F1×F2) has the
extra constraint of u being convex, thus, given that it is a maximization problem, it
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has to be that Rev(F1 × F2) ≤ R(u;F1 × F2). Finally, it is easy to verify in the proof
ofTheorem 5.2 that dropping just the concavity requirement for H can only affect the
concavity of functions s1, s2.

Example 2 (Power-Law Distributions). A class of important distributions that falls into
the description of Theorem 5.3 are the power-law distributions with parameters 0 <

α ≤ 2. More specifically, these are the distributions having densities f(t) = c/(t+ 1)α,
with the normalization factor c selected so that

∫ 1
0 f(t) dt = 1, i.e. c = (a−1)/(1−21−α).

It is not difficult to verify that these distributions satisfy Assumption 5.1. For example,
for α = 2 one gets f(x) = 2/(x+ 1)2, the equal revenue distribution shifted in the unit
interval. For this we can compute via Theorem 5.3 that s(t) = 1

2

√
5 + 2t+ t2− 1

2(1+ t)
and p ≈ 0.665, which gives an upper bound of Rf,f (u) ≈ 0.383 to the optimal revenue
Rev(F × F ).

5.5.1 Convexification

The approximation results described in Theorem 5.3 can be used not only for giving
upper bounds on the optimal revenue, but also as a design technique for good selling
mechanisms. Since the only deviation from a feasible utility function is the fact that
function s is not concave (and thus u is not convex), why don’t we try to “convexify”
u, by replacing s by a concave function s̃, resulting in a new, convex and thus feasible
auction ũ? If ũ is “close enough” to the original u, by the previous discussion this
would also result in good approximation ratios for the new, feasible selling mechanism.

More formally, the goal is to find a convex utility function ũ such that

R(u;F1 × F2)
R(ũ;F1 × F2) (5.25)

is minimized. Recall that this ratio is always above 1 and it is an upper bound on the
approximation ratio Rev(F1×F2)

R(ũ;F1×F2) of the new feasible mechanism ũ, since by Theorem 5.3,

R(ũ;F1 × F2) ≤ Rev(F1 × F2) ≤ R(u;F1 × F2).

Let’s demonstrate this by an example, using the equal revenue distribution f(t) =
2/(t + 1)2 of the previous example. We need to replace s with a concave s̃ in the
interval [0, x∗]. So let us choose s̃ to be the concave hull of s, i.e. the minimum concave
function that dominates s. Since s is convex, this is simply the line that connects the
two ends of the graph of s in [0, x∗], that is, the line

s̃(t) = s(0)− s(x∗)
x∗

(x∗ − t) + s(x∗).

A calculation of the ratio (5.25) for this example of the equal revenue distribution gives
a value of 1+3×10−9, rendering the resulting new valid mechanism essentially optimal.
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5.6 More on Uniform Distributions

In this section we turn our attention again to uniform distributions, and we deal with
the problem of maximizing the expected revenue of a two-good monopolist when facing
an additive buyer whose values for the goods come uniformly i.i.d. over general unit-
length intervals [c, c + 1], c > 0. This problem was solved by Pavlov [66]. In the
case of c = 0, the optimal selling mechanism is deterministic with prices 2/3 for each
of the items and (4 −

√
2)/3 for their bundle. This result was already known by

the work of Manelli and Vincent [53], and an alternative proof based on duality and
complementarity can be found also in [31]. For c ≥ 0.077, the optimal mechanism is
again deterministic and it only offers the full bundle for a price of (4c +

√
4c2 + 6)/3.

For the range in between, that is for c ∈ (0, 0.077), Pavlov numerically computes that
the optimal mechanism is a randomized one, with a menu-complexity [39] of 4.

Here, we present a very simple alternative proof for the cases of c = 0 and c ≥
0.092. For the remaining case, although we give the optimal solution to the primal-
dual formulation, it turns out that it is not convex and that its objective value is
strictly greater than the optimal revenue that can be achieved by any feasible selling
mechanism. This is because our primal program is a relaxed version of the original
revenue-maximization one, dropping the convexity constraint for the bidder’s utility
function. This relaxation has been the standard approach so far in duality theory
frameworks for such problems (see [25, 31]). So, this is a demonstration of the necessity,
in general, of the convexity requirement for exact optimal mechanism design, even in
the case of two regularly i.i.d. items5. Nevertheless, on the positive side, we are able
to demonstrate that the two solutions are practically very close to each-other (within
a factor of 7.5%��): in Figure 5.6 we provide upper bounds on approximation ratios
for that optimal relaxed primal value with respect to the revenue achieved by the best
randomized, the best deterministic and the best full-bundling mechanisms.

5.6.1 An Explicit Construction of an Optimal Dual

A characteristic of our approach here that differentiates it from the results in the
previous sections is that it is completely constructive: we give explicit, simple closed-
form definitions of the dual functions, rather than just proving their existence. This
immediately allows for a trivial check of optimality through weak duality (Lemma 3.1):
just compute their (dual objective) value and see if this coincides with the revenue
induced by the (primal) utility function. However, we follow an even simpler way: we
deploy (tight) complementarity (Lemma 3.2) and so we can verify their optimality just
by looking at some simple features of their structure.

The primal and dual programs are now of the form:
5An example of the necessity of convexity was also given in Section 3.3.1, even for one item, but

the distribution used there is not regular.
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maximize
∫ c+1

c

∫ c+1

c

∂u(x)
∂x1

x1 + ∂u(x)
∂x2

x2 − u(x) dx

over the space of absolutely continuous functions u : [c, c+ 1]2 −→ R+ with

∂u(x)
∂x1

,
∂u(x)
∂x2

≤ 1, (5.26)

for a.e. x1, x2 ∈ [c, c+ 1], and

minimize
∫ c+1

c

∫ c+1

c
z1(x) + z2(x) dx

over the space of absolutely continuous functions z1, z2 : [c, c+ 1]2 −→ R+ with

∂z1(x)
∂x2

+ ∂z2(x)
∂x2

≤ 3 (5.27)

z1(c, x2), z2(x1, c) ≤ c, (5.28)

z1(c+ 1, x2), z1(x1, c+ 1) ≥ c+ 1, (5.29)

for a.e. x1, x2 ∈ [c, c+ 1]. We also state the form of exact complementarity we take in
our case of uniform distributions by setting ε = 0 in Lemma 3.2:

Lemma 5.4 (Exact Complementarity for two uniform goods). If for a.e. x ∈ [c, c+ 1]
the following conditions hold for a pair of primal and dual solutions ũ and z1, z2 then
they are both optimal:

• Either ũ(x) is zero or the dual constraints (5.27)–(5.29) hold with strict equality

• For any j = 1, 2, either zj(x) is zero or the corresponding primal constraint
in (5.26) holds with strict equality.

5.6.2 The Case of 0 ≤ c ≤ 0.092

Consider the pair of primal-dual variables ũ, (z1, z2) whose derivatives are given in
Figure 5.3. The duals z1, z2 are symmetric, in the sense that z1(x1, x2) = z2(x2, x1) for
all x. Notice that this is enough to completely define them, by the initial conditions
ũ(x) = 0 and z1(x) = 0, z1(x) = c given in the white and red areas. We will argue
that they are optimal. By looking at their structure in Figure 5.3, it is easy to see
that the applicability of the (exact) complementarity Lemma 5.4 is just a matter of
simple calculations, essentially to check constraints (5.27)–(5.29). Optimality would
be immediate.

To do that, first of all we need to check that the specific parameters give rise to a
consistent partitioning of the allocation space, and in particular that

c ≤ d ≤ b ≤ q ≤ r ≤ c+ 1, r − q = d− c and p = q + b.
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(a) The values of ∇ũ(x) of an optimal primal solution ũ.
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(b) The values of ∂z1(x)/∂x1. The duals are symmetric and so ∂z2(x)/∂x2 can be recovered
by the relation ∂z2/∂x2 = 3 − ∂z1/∂x1 in the grey area (and z2 = 0 in the white). Here
φ(x) = c+1−3(x−c)

c+1−r .

Figure 5.3: A pair of optimal primal-dual solutions for 0 ≤ c ≤ 0.092. Notice how the primal
solution ũ in Figure 5.3a is not convex, so it does not correspond to a valid utility function of a
truthful selling mechanism. The values of the various parameters are: q = 2(c+1)

3 , p = 4−
√

2
3 (c + 1),

h = p
2 , b = p− q, r = 1

3

(
2 + c+

√
c(2 + 3c)

)
, d = 1

3

(
2c+

√
c(2 + 3c)

)
.
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Given the choice of the parameters, it is trivial to check that the two last equalities are
satisfied. The first chain of inequalities is satisfied for all 0 ≤ c ≤ c̄ where

c̄ ≡
√

15− 8
√

2− 2
√

2 + 1 ≈ 0.0915.

At this value c = c̄ we get the limiting situation when d = b and p = r, and ũ is a
feasible utility function of the mechanism that offer only the full-bundle for a price of
p. On the other hand, notice that for c = 0 we get q = r and d = c, and the pair
of primal-duals naturally reduces to the well-know optimal selling mechanism for two
uniform items on [0, 1] with prices q = 2

3 and p = 4−
√

2
3 for the one- and two-item

bundles respectively.
We now just have to show that z1 is feasible. In particular, it is again easy to

calculate that z1(c + 1, x2) = c + 1, given the values of the parameters, the definition
of φ and the initial condition z1(a, x2) = c for x2 > r and z1(c, x2) = 0 otherwise. The
only thing remaining to check is that z1 never falls below zero. This can be done by
easily verifying that indeed c +

∫ d
c 3 − φ(t) dt = 0, so z1 is nonnegative at the upper

critical stripe. Everywhere else, all its derivatives are nonnegative, so it cannot decrease
further.

5.6.3 The Necessity of Convexity

The optimality of the solutions in Figure 5.3 is not able to directly also give us an
optimal selling mechanism, because the primal solution ũ constructed there is not
convex. In fact, one can show that no mechanism can achieve the primal optimal
objective of ũ, which equals

2
27

[(√
2− 4

)
c3 + 3

(√
c(3c+ 2) +

√
2 + 1

)
c2 +

(
2
√
c(3c+ 2) + 3

√
2 + 12

)
c+
√

2 + 6
]
≡ Opt(c)

This proves that dropping the convexity constraint (in the initial formulation of our
primal program) is not without loss, even in the simplest of settings: one bidder, two
i.i.d. uniform items over [c, c + 1] with 0 ≤ c ≤ c̄. However, it turns out that this
optimal objective is still not far away from the optimal mechanism’s revenue, in fact
it is extremely close even to that of the best deterministic or just the best full-bundle
mechanism. Specifically in Figure 5.6 one can see that the best randomized mechanism
is within a factor of 7.5%��, and the best deterministic and full-bundle within factors
of 2%� and 9%�, respectively, with respect to Opt(c).

Let’s make this discussion more rigorous. As we’ve mentioned before, our primal-
dual formulation relaxes the original optimal revenue problem in two ways: first drop
the convexity constraint, that corresponds to the truthfulness requirement; then we
drop the dual variables sj that correspond to the primal constraints ∇u(x) ≥ 0. The
latter relaxation has no actual effect to the optimal solution of the primal-dual pro-
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grams, at least for the particular case we study here of i.i.d. uniform valuations over
intervals of the form [c, c + 1]. The reason for that is simple: the optimal solution ũ
that we get after all relaxations satisfies ∇ũ(x) ≥ 0 anyway.

So now let us focus on the necessity of the crucial remaining condition, that of con-
vexity. By Pavlov’s results we know that for c > 0.077 full bundling is an optimal selling
mechanism. Such a mechanism in our setting sets a take-it-or-leave-it price s for both
items together, thus having an expected revenue of
(1 − (s−2c)2

2 )s (a simple probabilistic argument, taking into consideration the area of
the grey region in that case). This is maximized for s being the root of

27s3 − 108s2c+ s
(
108c2 − 54

)
− 16c3 + 4

√
2
√

(2c2 + 3)3 + 72c = 0

giving a revenue of

BRev(c) = 2
27

(
−4c3 +

√
2
√

(2c2 + 3)3 + 18c
)
,

which, as we said, is also the optimal revenue for c > 0.077. However, it is easy to
check that for all 0.077 < c < c̄ it strictly holds BRev(c) < Opt(c), demonstrating
the gap caused by dropping convexity.

5.6.4 The Case of c ≥ 0.092

For c ≥ c̄ it turns out that convexity is indeed not needed and the optimal solution
of the primal-dual programs give also the optimal selling mechanism, which is a full-
bundling one, as can be seen by the complementarity of the pair of primal-dual solutions
we propose in Figure 5.4.

It is again a matter of trivial calculations to check that indeed z1(c+ 1, x2) = c+ 1
for all x2 ∈ [c, c+ 1]. The point that needs more attention is making sure that z1 does
not get negative. There is a risk of getting below 0 at the top stripe q ≤ x2 ≤ c + 1,
and in particular in the box where a ≤ x1 ≤ h. A simple derivative argument shows
us that z1 achieves a minimum there at x1 = x∗1 ≡ 1

3

(
2c− 2

√
4c2 + 6

)
and solving

z1(x∗1, x2) ≥ 0 we get that c ≥
√

15− 8
√

2− 2
√

2 + 1 = c̄, which is exactly the the case
we are in, complementary to the previous Section 5.6.2.

We must mention here that there is also a more unified dual solution scheme that
can cover both cases of Section 5.6.2 and Section 5.6.4 at the same time: simply replace
the dual solution in Figure 5.3b for c ≤ c̄ by the slightly more involved in Figure 5.5
which however now fits smoothly with the one in Figure 5.4b for the other case of
c ≥ c̄.
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(a) The values of ∇u(x) of an optimal primal solution u.
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(b) The values of ∂z1(x)/∂x1. The duals are symmetric and the values of ∂z1(x)/∂x2 can be
recovered by the relation ∂z2/∂x2 = 3− ∂z1/∂x1 in the grey area (and z2 = 0 in the white).

Figure 5.4: A pair of optimal primal-dual solutions for c ≥ 0.092. Notice the primal solution
u in Figure 5.4a corresponds to a deterministic full-bundle mechanism. The values of the various
parameters are: p = 1

3
(
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√
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)
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2 .
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Figure 5.5: Alternative dual optimal optimal solution to the one given in Figure 5.3b. All parameters
remain the same. This fits with the dual solution given in Figure 5.4b.
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(a) Best randomized selling mechanism, 1.00075-approximate. To plot this one can use the
form of the optimal auction given in [66].
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(b) Best deterministic selling mechanism, 1.002-approximate.
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(c) Best full-bundle mechanism, 1.009-approximate.

Figure 5.6: Approximation ratios of the best randomized (Figure 5.6a), deterministic (Figure 5.6b)
and full-bundle (Figure 5.6c) selling mechanisms with respect to the optimal objective of the primal-
dual approach with relaxed convexity, for 0 ≤ c ≤ c̄ = 0.092.
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Chapter 6

Bounding the Optimal Revenue

Following the discussion about related work in Section 2.4 as well as the development
of our main results in the previous chapters, it should have been made clear by now
that the problem of finding exactly optimal selling mechanisms for more than a single
good is notoriously difficult: More than 30 year after the seminal work of Myerson [58],
only the case of two and three uniformly i.i.d. goods was solved, and it is believed that
closed-form descriptions are in general beyond our grasp (see e.g. [26]). Our work so
far in this thesis was able to solve the case of two independent (but not necessarily
identical) goods for a wide range of distributional priors, and also extend the uniform
case for up to six items (with the optimality of the SJA mechanism conjectured to hold
for any number of goods m, see Section 4.2).

So, it is essential to try to approximate the optimal revenue by selling mechanisms
that are as simple as possible. We may lose something with respect to the total revenue
objective, but on the other hand these mechanisms are much easier to understand, de-
scribe, analyze and implement, and such results may in fact enrich our understanding
of the character of exact optimal auctions in general. Inspired by the elegant approach
of Hart and Nisan [38] (see Section 2.4), in this chapter we take the opposite direction
to their universal approximation guarantees for general independent distributions, and
try to give better, specialized bounds for the case of uniform and exponential distribu-
tions. The choice of these two particular priors here is not random; we wanted to study
“canonical” examples of distributions, one for bounded-interval supports and one hav-
ing full support [0,∞). The uniform and exponential distributions are, respectively,
the maximum entropy probability distributions for these two settings, intuitively being
the “natural” choices if one wants to make as few assumptions as possible (see e.g. [34,
Sect. 3.4.3]).

Our main strategy is driven by the standard technique in approximation algorithms,
to use weak duality to upper-bound the optimal objective and then use this to calculate
approximation upper bounds for particular algorithms. For this, we will once more
use the duality-theory framework developed in Chapter 3. In particular, we use the
weak-duality Lemma 3.1 in order to get specific closed-form bounds for our settings
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(Theorems 6.1 and 6.3), by constructing and plugging-in appropriate feasible dual
solutions (Theorems 6.2 and 6.4). This is the most technical part of this chapter.
This technique is completely different to previous results on approximate mechanisms
which rely entirely on probabilistic analysis methods (e.g. the core-tail decomposition
of [48]). Our bounds on the optimal revenue are very simple expressions, depending on
the number of items m. We believe that, given how difficult is the problem of exactly
determining the optimal revenue, coming up with such formulas is a very useful tool
for (approximate) auction analysis, and is of its own interest.

By comparing these bounds to the revenue obtained by the simple mechanisms
studied in Hart and Nisan [38] we are able to give closed-form approximation guarantees
with respect to the number of itemsm, in both settings that we are interested in: for the
case of i.i.d. uniform distributions (see Figure 6.2) over the unit interval we show that
selling the items separately is 2-approximate1 and that selling in a full-bundle always
performs better and is asymptotically optimal; for independent (and not necessarily
identical) exponential distributions (see Figure 6.3) we give a closed-form formula upper
bound (6.18) for selling separately that can be loosely2 upper-bounded by e ≈ 2.7.

Furthermore, if the exponential distributions are in addition identical, then we
can show (Theorem 6.6) that selling deterministically in a full-bundle is optimal, for
any number of goods. We derive this optimality as a side result of the analysis of a
very simple and natural randomized selling mechanism that we propose for the set-
ting of independent (but not necessarily identical) exponential valuations. We call it
Proportional (Definition 6.1) and allocates the items somehow proportionally with
respect to every item’s exponential distribution parameter. We compute the expected
revenue of this mechanism (Theorem 6.5) and using again the optimal revenue bounds
derived earlier, we show that Proportional’s approximation ratio is at most equal
to the ratio between the maximum and minimum parameters of the independent ex-
ponential distributions. For i.i.d. settings, this ratio is of course equal to 1, proving
optimality and Proportional reduces to full-bundling.

6.1 Uniform Distributions

In this section we consider m items with i.i.d. types xj coming from a uniform distri-
bution over the unit interval I, i.e. fj(xj) = 1 for all j ∈ [m]. Then, the primal and
dual programs are given by (4.1) and (4.2) respectively:

Theorem 6.1 (Weak Duality for uniform distributions). The dual constraints for the
1This ratio of 2 is in fact not tight, but only asymptotically as m → ∞, meaning that selling

separately is even better for a small number of items.
2See the analogous discussion in Footnote 1.
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m-items uniform i.i.d. setting over Im become:

zj(0,x−j) = 0, for all j ∈ [m], (6.1)

zj(1,x−j) ≥ 1, for all j ∈ [m], (6.2)
m∑
j=1

∂zj(x)
∂xj

≤ m+ 1, (6.3)

and the dual objective upper-bounds optimal revenue:

Rev (Um) ≤
m∑
j=1

∫
Im
zj(x) dx. (6.4)

Theorem 6.2. The optimal revenue from selling m goods having uniform i.i.d. val-
uations over the unit interval is at most

m(1 +m2)
2(1 +m)2 .

Proof. Let
Im ≡ {v = (v1, v2, . . . , vm) | vj ∈ {0, 1} , j ∈ [m]}

be the set of nodes of the m-dimensional unit hypercube and for every node v ∈ Im
define Lv to be the following subspace of Im:

Lv =
{

x ∈ Im
∣∣∣∣ xj ∈ [0, 1

m+ 1

]
if vj = 0 and xj ∈

( 1
m+ 1 , 1

]
if vj = 1, j ∈ [m]

}

A simple observation is that Lv’s form a valid partition of Im, i.e.

v,v′ ∈ Im ∧ v 6= v′ =⇒ Lv ∩ Lv′ = ∅ and
⋃

v∈Im
Lv = Im

Now we are going to construct a feasible dual solution, that is, valid zj’s, to plug
them into Theorem 6.1. Fix some j ∈ [m] and a subspace Lv ⊆ Im (by fixing a
v = (v1, v2, . . . , vm) ∈ Im) and define zj : Lv −→ R+ as follows:

• If vj = 0, set zj(x) = 0 for all x ∈ Lv.

• Otherwise, i.e. if vj = 1, set

zj(x) = max
{

0, m+ 1
k

(xj − ck)
}

=

0, if 1
m+1 < xj ≤ ck,

m+1
k

(xj − ck), if ck < xj ≤ 1,

for all x ∈ Lv, where

k = k(v) =
m∑
j=1

vj and ck = 1− k

m+ 1 .
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By this construction, and by letting v range over Im, we have a well defined function
zj : Im −→ R+. Each x ∈ [0, 1]m belongs to a unique partition Lv (corresponding to
a unique v = v(x)), thus also well defining k = k(x). So, the above definition can be
written more compactly as

zj(x) =

0, if 0 < xj ≤ ck,

m+1
k

(xj − ck), if ck < xj ≤ 1.

It is easy to check, directly from this definition, that

zj(0, x−j) = 0 and zj(1, x−j) = 1 (6.5)

for all j = 1, 2, . . . ,m and x−j ∈ Im−1 and also that

∂zj(x)
∂xj

=

0, if 0 < xj ≤ ck,

m+1
k
, if ck < xj ≤ 1.

(6.6)

Furthermore, if we fix some x ∈ Im (and thus also fix the corresponding, well-
defined, v = v(x) ∈ Im and k = ∑m

j=1 vj), we see from property (6.6) above that

m∑
j=1

∂zj(x)
∂xj

≤
m∑
j=1

vj
m+ 1
k

= m+ 1
k

m∑
j=1

vj = m+ 1. (6.7)

But now we can see that Equations (6.5) and (6.7) are exactly properties (6.1), (6.2)
and (6.3).

The last remaining step of the proof is to evaluate the dual objective and show that

∫
Im

m∑
j=1

zj(x) dx = m(1 +m2)
2(1 +m)2 .

Indeed
∫
Im

m∑
j=1

zj(x) dx =
∑

v∈Im

∫
Lv

m∑
j=1

zj(x) dx

=
∑

v∈Im

∫
Lv

∑
j:vj=1

zj(x) dx

=
m∑
κ=1

∑
v:k(v)=κ

∫
Lv

∑
j:vj=1

zj(x) dx

=
m∑
κ=1

(
m

κ

) ∫ 1
m+1

0
· · ·

∫ 1
m+1

0︸ ︷︷ ︸
m− κ times

∫ 1

1
m+1

· · ·
∫ 1

1
m+1︸ ︷︷ ︸

κ times

∑
j:vj=1

zj(x) dx

=
m∑
κ=1

(
m

κ

)∫ 1
m+1

0
· · ·

∫ 1
m+1

0

∫ 1

1
m+1

· · ·
∫ 1

1
m+1

∑
j:vj=1

m+ 1
κ

(xj − ck) dx
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=
m∑
k=1

(
m

k

)∫ 1
m+1

0
· · ·

∫ 1
m+1

0

∫ 1

1
m+1

· · ·
∫ 1

1
m+1

∑
j:vj=1

m+ 1
k

(xj − ck) dx

=
m∑
k=1

(
m

k

)( 1
m+ 1

)m−k
k
∫ 1

1
m+1

· · ·
∫ 1

1
m+1

∫ 1

ck

m+ 1
k

(x− ck) dx

=
m∑
k=1

(
m

k

)( 1
m+ 1

)m−k
k
(

1− 1
m+ 1

)k−1 ∫ 1

ck

m+ 1
k

(x− ck) dx

=
m∑
k=1

(
m

k

)
mk−1

(m+ 1)m−2

∫ 1

ck

(x− ck) dx

=
m∑
k=1

(
m

k

)
mk−1

(m+ 1)m−2
(1− ck)2

2

= 1
2(m+ 1)m

m∑
k=1

(
m

k

)
k2mk−1

= m(1 +m2)
2(1 +m)2 .

Discussion of Theorem 6.2 We must mention here that one can trivially get an
upper bound of m

2 for the optimal revenue Rev(Um), which is close to that given by
Theorem 6.2: simply observe that by the IR constraint the seller cannot expect to
extract more revenue than the buyer’s surplus, i.e. the sum of the item valuations∑m
j=1 xj, which for the uniform distribution has an expectation of m

2 (see also Sec-
tion 2.3.3). The two bounds are equal in the limit as the number of items grows large,
however the one in Theorem 6.2 still gives an improvement by a factor of (m+1)2

m2+1 , which
especially for a small number of goods, is not insignificant. Notice that, due to the Law
of Large Numbers, the optimal revenue as m → ∞ will anyway tend to the expected
full surplus, not only for the uniform distribution, but for any kind of independently
distributed items3.

From that perspective, we believe that it is interesting to get bounds on the opti-
mal revenue other than the trivial ones derived from using the above surplus-bound
argument. To our knowledge Theorem 6.2 is the first such result in the literature.
But, probably even more important than the improvement in the bound’s value itself,
is the underlying technique of providing explicit feasible dual solutions to plug into
Theorem 6.1: this can give new insights in the structure of good approximations of the
optimal revenue, something which is known to be particularly difficult for our problem.
To demonstrate this, consider for example the case of just two goods (m = 2) with
valuations drawn uniformly from I. The dual program (6.1)–(6.3) essentially asks to
allocate a total available value of 3 among the derivatives of z1 and z2 over I2 in a
way that these functions start at 0 and grow up above 1 at the boundary of I. On

3For more on this, see the discussion in [38]. This is the reason why, as Hart and Nisan [40] state,
for our problem “the difficult case is when there is more than one but not too many goods”.
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one hand there is the trivial way to do that, simply allocating the total weight equally:
∂z1(x)
∂x1

= ∂z2(x)
∂x2

= 3
2 for all x ∈ I2; this is clearly a suboptimal solution, since the

functions end up reaching a value of 3
2 at the boundary’s end, way above 1. On the

other hand, there is the optimal way to do it, given in [29] (see Figure 6.1b). However,
this construction is rather involved and very difficult to generalize, and in fact only
existential proofs of optimality are know for more goods, and only up to 6 items. So,
it seems essential to find some middle ground within these two extremes, providing a
good approximation to the optimal revenue but also still being simple enough to gen-
eralize for any number of items m. This is exactly what the construction of the dual
solutions in the proof of Theorem 6.2 provides. A demonstration is given in Figure 6.1
for the case of two goods.

6.2 Exponential Distributions

In this section we consider m items with types xj coming from independent (but not
necessarily identical) exponential distributions with parameters λj > 0, i.e. fj(xj) =
λje
−λjxj for all j ∈ [m] and xj range over [0,∞). Then, the primal and dual programs

from (3.4) and (3.5) give:

Theorem 6.3 (Weak Duality for exponential distributions). The dual constraints for
the m-items independent exponential setting (with parameters λ1, λ2, . . . , λm) become:

zj(0,x−j) = 0, for all j ∈ [m], (6.8)
m∑
j=1

∂zj(x)
∂xj

≤ λ (m+ 1− w) e−w, (6.9)

where w = ∑m
j=1 λjxj, λ = ∏m

j=1 λj and the dual objective upper-bounds optimal rev-
enue:

Rev (E) ≤
m∑
j=1

∫
Rm+

zj(x) dx. (6.10)

Now we will need to introduce some notation. In the following, for m positive
integer and w ∈ R+ we will denote the (upper) incomplete Gamma function by

Γ (m,w) ≡
∫ ∞
w

tm−1e−t dt = (m− 1)!e−w
m−1∑
k=0

wk

k!

and define
g(m,w) = Γ (m+ 1, w)− (m+ 1)Γ (m,w). (6.11)

Function g is continuous and has a unique root with respect to variable w ∈ R+.
Let’s denote this root by γ∗m. In fact, γ∗m ∈ (0,m + 1) and also g(m,w) > 0 for all
w ∈ (γ∗m,∞). So, the following function on the positive integers is well defined and
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Figure 6.1: Different feasible dual solutions z1, z2 for two goods with uniform valuations over [0, 1],
given by their critical derivatives

(
∂z1(x1,x2)

∂x1
, ∂z2(x1,x2)

∂x2

)
.
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nonnegative:

G(m) ≡
∫ ∞

0
max{0, g(m,w)} dw =

∫ ∞
γ∗m

g(m,w) dw = γ∗mΓ (m, γ∗m) = γ∗m
m+1e−γ

∗
m .

(6.12)
A detailed proof of all the above properties of function g(m,w) and calculations can
be found in the following subsection.

Properties of Function g(m,w)

Fix some positive integerm. Then g(w) ≡ g(m,w) is an absolutely continuous function
on R+ with derivative

g′(w) = ∂Γ (m+ 1, w)
∂w

− (m+ 1)∂Γ (m,w)
∂w

= −w
m

ew
− (m+ 1)

(
−w

m−1

ew

)
= (m+ 1− w)wm−1e−w. (6.13)

This means that g(w) is strictly increasing in [0,m + 1] and strictly decreasing in
[m+ 1,∞). Also we can compute:

g(m, 0) = Γ (m+ 1, 0)− (m+ 1)Γ (m, 0)

= m!− (m+ 1)(m− 1)! = −(m− 1)! < 0

g(m,m+ 1) = Γ (m+ 1,m+ 1)− (m+ 1)Γ (m,m+ 1)

= (m− 1)!e−(m+1)
[
m

m∑
k=0

(m+ 1)k
k! − (m+ 1)

m−1∑
k=0

(m+ 1)k
k!

]

= (m− 1)!e−(m+1)
m−1∑
k=0

(
(m+ 1)m

m! − (m+ 1)k
k!

)
> 0

lim
w→∞

g(m,w) = 0.

From the above we can deduce that g(w) has a unique root γ∗ in R+. In fact γ∗ ∈
(0,m+ 1) and g(w) < 0 for all w ∈ (0, γ∗) and g(w) > 0 for all w ∈ (γ∗,∞).

Furthermore, we know that the incomplete gamma function has the property

Γ (m+ 1, w) = mΓ (m,w) + wme−w. (6.14)
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With the help of this we can see that
∫ ∞
a

Γ (m,w) = [wΓ (m,w)− Γ (m+ 1, w)]∞a

=
[
wΓ (m,w)−mΓ (m,w)− wme−w

]∞
a

=
[
(w −m)Γ (m,w)− wme−w

]∞
a

= (m− a)Γ (m, a) + ame−a

for any positive integer m and a ∈ R+, so∫ ∞
a

g(m,w) dw =
∫ ∞
a

Γ (m+ 1, w)− (m+ 1)
∫ ∞
a

Γ (m,w)

= (m+ 1− a)Γ (m+ 1, a) + am+1e−a − (m+ 1)(m− a)Γ (m, a)− (m+ 1)ame−a

= (m+ 1− a)(mΓ (m, a) + ame−a)− (m+ 1)(m− a)Γ (m, a) + ame−a(a−m− 1)

= [(m+ 1− a)m− (m+ 1)(m− a)]Γ (m, a)

= aΓ (m, a).

Also due to (6.14) we get

g(m,w) = Γ (m+ 1, w)− (m+ 1)Γ (m,w)

= mΓ (m,w) + wme−w − (m+ 1)Γ (m,w)

= wme−w − Γ (m,w)

and so, since γ∗ is a root of g(m,w) this means that

Γ (m, γ∗) = (γ∗)me−γ∗ .

We will now show the bound G(m)
m! < 1 we used in (6.18). We have:

G(m)
m! = γ∗mΓ (m, γ∗m)

m! from (6.12)

= e−γ
∗
m
γ∗m
m

m−1∑
k=0

γ∗m
k

k!

< e−γ
∗
m

m−1∑
k=0

γ∗m
k+1

(k + 1)! since k + 1 ≤ m

< e−γ
∗
m

∞∑
k=0

γ∗m
k

k! = 1.

We are now ready to upper bound the optimal revenue in the case of multiple
exponentially distributed goods:
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Theorem 6.4. The optimal revenue from selling m goods having independent ex-
ponential valuations (with parameters λ1, λ2, . . . , λm) is at most

G(m)
m!

m∑
j=1

1
λj
,

where G(m) is defined in (6.12). In the special case of i.i.d. exponential valuations
with parameter λ this becomes

G(m)
(m− 1)!λ.

Proof. We will construct appropriate dual variables zj that satisfy (6.8) and (6.9) to
plug into the Weak Duality Theorem 6.3. For all j = 1, 2, . . . ,m and x ∈ Rm

+ we define

zj(x) = max
{

0, λ̂xjw−mg(m,w)
}

=

λ̂xjw
−mg(m,w), if w ≥ γ∗m

0, otherwise,

where λ̂ = ∏m
j=1 λj, w = ∑m

j=1 λjxj and function g(m,w) as defined in (6.11). The
nonnegativity of the dual variables as well as their absolute continuity is immediate
from the properties of function g(m,w). It is also trivial to see that condition (6.8) is
immediately satisfied by the definition of zj. Regarding condition (6.9), for any j ∈ [m]
and x ∈ Rm

+ such that w ≥ γ∗m we calculate

∂zj(x)
∂xj

= λ̂w−mg(m,w) + λ̂xj
∂w−mg(m,w)

∂xj

= λ̂w−mg(m,w) + λ̂λjxj
∂w−mg(m,w)

∂w

= λ̂w−mg(m,w) + λ̂λjxj

[
w−m

∂g(m,w)
∂w

−mw−m−1g(m,w)
]

= λ̂w−mg(m,w) + λ̂λjxj
[
(m+ 1− w)w−1e−w −mw−m−1g(m,w),

]
so, by summing up we get

m∑
j=1

∂zj(x)
∂xj

= mλ̂w−mg(m,w) + λ̂w
[
(m+ 1− w)w−1e−w −mw−m−1g(m,w)

]
= λ̂(m+ 1− w)e−w.

At the remaining case of w < γ∗m, we have that zj(x) = 0 for all j ∈ [m]. Also, since
γ∗m < m+ 1, we know that w < m+ 1, so

m∑
j=1

∂zj(x)
∂xj

= 0 < λ̂(m+ 1− w)e−w.
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Thus, in any case (6.9) is satisfied.
Finally, we compute the dual objective value in (6.10). First notice that

m∑
j=1

zj(x) =

λ̂w
−mg(m,w)∑m

j=1 xj, if w ≥ γ∗m

0, otherwise.

We perform the following change of variables in the integral:

x1 = t1
w

λ1
, x2 = t2

w

λ2
, . . . , xm−1 = tm−1

w

λm−1
and xm = (1− t1 − t2 − · · · − tm−1) w

λm
(6.15)

where w = ∑m
j=1 λjxj ∈ R+ and t1, . . . , tm−1 ∈ R+ with 0 ≤ t1 + · · ·+ tm−1 ≤ 1. Denote

this subspace of Im−1 where tj’s range by A. The Jacobian of this transformation
equals wm−1

λ̂
and so the integral in (6.10) can be written as:

∫
Rm+

m∑
j=1

zj(x) dx =
∫ ∞
γ∗m

∫
A
λw−mg(m,w)

m∑
j=1

xj ·
wm−1

λ̂
dt1 dt2 . . . dtm−1 dw

=
∫ ∞
γ∗m

g(m,w) dw
∫
A

t1
λ1

+ · · ·+ tm−1

λm−1
+ 1− t1 − · · · − tm−1

λm
dt1 . . . dtm−1

= G(m)
∫
A

m−1∑
j=1

(
1
λj
− 1
λm

)
tj + 1

λm
dt1 . . . dtm−1

= G(m)
 1
m!

m−1∑
j=1

(
1
λj
− 1
λm

)
+ 1

(m− 1)!λm


= G(m)

m!

m∑
j=1

1
λj
.

At the third equation above we used the following Lemma describing some known
“geometric” properties of the body A used in the transformation (6.15).

Lemma 6.1. For any positive integer m,
∫
A

1 dt1 . . . dtm−1 = µ(A) = 1
(m− 1)! and

∫
A
tj dt1 . . . dtm−1 = 1

m! ,

for all j ∈ [m− 1] (where µ denotes the standard Lebesgue measure).

6.3 Simple Auctions for Many Items

6.3.1 Simple, Closed-form Approximation Guarantees

Regarding i.i.d. uniform goods, Theorem 6.2 combined with (2.12) immediately gives
us the following approximation ratio bound for the simple deterministic mechanism
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Figure 6.2: The approximation ratio bounds for the uniform i.i.d. separate and full-bundle selling
mechanisms in (6.16) and (6.17).

that sells the items separately:

Rev(Um)
SRev(Um) ≤ 2 1 +m2

(1 +m)2 < 2. (6.16)

A plot of this approximation ratio for the values of m = 1, 2, . . . , 100 can be found
in Figure 6.2, drawn with blue colour. In the same way, using the other expression
of (2.12) together with (2.13) we get a bound for the approximation ratio of the deter-
ministic full bundle mechanism, which is asymptotically optimal:

Rev(Um)
BRev(Um) ≤

m(1 +m2)
2(1 +m)2 supx∈[0,m] x

(
1− 1

m!
∑bxc
k=0(−1)k

(
m
k

)
(x− k)m

) → 1, (6.17)

as m→∞. A plot of this approximation ratio for the values of m = 1, 2, . . . , 100 can
be found in Figure 6.2, drawn with red colour. Notice how full bundling outperforms
selling separately for any number of goods m. For exponentially distributed goods, an
immediate result of Theorem 6.4 combined with formula (2.14) is that for indepen-
dent (not necessarily identical) exponential valuations the approximation ratio of the
deterministic mechanism that sells items separately is at most

Rev (E)
SRev(E) ≤

G(m)
m! e < e. (6.18)

A plot of this approximation ratio G(m)
m! e for the values m = 2, 3, . . . , 100 can be found

in Figure 6.3. The loose constant factor bound G(m)
m! < 1 is straightforward and the

proof can be found in Section 6.2.
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Figure 6.3: The approximation ratio bound in (6.18) for the separate selling mechanism for inde-
pendent exponential valuations.

6.3.2 A Simple Randomized Selling Mechanism

Consider the following very simple randomized mechanism for the setting of indepen-
dent exponential valuations with parameters λ1, . . . , λm. Without loss of generality,
in the following let us assume that λ1 ≥ λ2 ≥ · · · ≥ λm. We will again be using our
notation of w = ∑m

j=1 λjxj and λ̂ = ∏m
j=1 λj.

Definition 6.1 (Mechanism Proportional). Sell item j with probability λj
λ1

and
collect a total payment of γ∗m/λ1 (parameter γ∗m is defined before (6.12)).

Essentially we sell the items with probability proportional to their parameters,
normalized by the largest parameter λ1. This mechanism is truthful, because it corre-
sponds to the following utility function

u(x) = max
{

0, x1 + λ2

λ1
x2 + · · ·+ λm

λ1
xm −

γ∗m
λ1

}

which is obviously convex and we will use the shorthand notation

U(w) = u(x) = max
{

0, w
λ1
− γ∗m
λ1

}
(6.19)

when this is more comfortable. Now let us compute Proportional’s expected rev-
enue. By (3.1) and the fact that fj(xj) = λje

−λjxj this is

λ̂
∫
Rm+

 m∑
j=1

∂u(x)
∂xj

− u(x)
 e−∑m

j=1 λjxj dx

and by a simple integration by parts (see e.g. the derivation in [25, Section 2]) this can
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be written as

λ̂
∫
Rm+

u(x)
 m∑
j=1

λjxj − (m+ 1)
 e−∑m

j=1 λjxj dx = λ̂
∫
Rm+

u(x) (w − (m+ 1)) e−w dx

and by performing the same change of variables as in (6.15) in the proof of Theorem 6.4
we get that Proportional’s expected revenue is

λ̂
∫ ∞

0

∫
A
U(w) (w − (m+ 1)) e−ww

m−1

λ
dw dt1 . . . dtm−1

which equals
1

(m− 1)!

∫ ∞
0

U(w)wm−1 (w − (m+ 1)) e−w dw

by using Lemma 6.1. Utilizing (6.13) and taking into consideration that U(0) = 0 and
limw→∞ g(m,w)U(w) = 0, integrating by parts the revenue becomes

1
(m− 1)!

∫ ∞
0

U ′(w)g(m,w) dw = 1
(m− 1)!

∫ ∞
γ∗m

1
λ1
g(m,w) dw = G(m)

(m− 1)!λ1
,

for the first equation using (6.19). So we showed the following:

Theorem 6.5. For m goods with independent (but not necessarily identical) expo-
nential valuations (with parameters λ1 ≥ λ2 ≥ · · · ≥ λm), mechanism Propor-
tional has an expected revenue of

G(m)
(m− 1)!λ1

,

where G(m) is defined in (6.12).
Immediately, by combining Theorem 6.5 with Theorem 6.4, we get that Pro-

portional’s approximation ratio is upper-bounded by

1
m

(
1 + λ1

λ2
+ · · ·+ λ1

λm

)
≤ max

j

λ1

λj
= λ1

λm
. (6.20)

The performance of this approximation ratio bound depends heavily on the choice of
the parameters λj. Obviously, the closer these parameters are the better the bound.
However, if λ1 � λm then this ratio can be unbounded. In such a case though, we
can fall back to using the constant approximation separate selling mechanism in (6.18)
which is at most e-approximate.

6.3.3 An Exact Optimality Result

A very interesting consequence of (6.20) is for the special case of i.i.d. exponential
priors, i.e. when λ1 = · · · = λm = λ. In that case, by (6.19) it is straightforward to
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see that Proportional reduces to the simple deterministic mechanism that sells all
items in a full bundle for a price of γ∗m/λ and also the approximation ratio in (6.20)
becomes 1, meaning that full bundling is optimal:

Theorem 6.6. Selling deterministically in a full bundle4 is optimal for any number
of exponentially i.i.d. goods.

4The optimal bundle price is γ∗m/λ, where λ is the parameter of the exponential distribution and
γ∗m is given before (6.12).
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Chapter 7

Future Directions

Here we present what we consider to be some interesting directions for possible future
research, related to the results presented in this thesis. Although the duality-theory
framework we presented here was a first step towards breaking the barrier between
Myerson’s single-good model and multidimensional settings, we are still far from a sat-
isfactory general understanding of optimal auctions when multiple items are involved.
In the last few years there has been a successful revival of interest in the subject, both
from the computer science and economics communities, producing some very interest-
ing results (see Section 2.4). We are hopeful that, if this effort continues with the same
intensity, soon enough we might witness the development of a solid, unifying theory
for multidimensional revenue maximization.

1. (Multiple-bidder settings) All exact optimality results that we are aware of, includ-
ing the ones presented in this thesis, that involve multiple items, are for settings
of a single buyer. Of course, there is the very interesting recent result of Yao [80]
but this provides us only with constant approximations of the optimal revenue.
Furthermore, the techniques used there are probabilistic in nature, most notably
the core-tail decomposition introduced in [48], and it seems that in order to derive
exact (or near optimal) results a different, explicit and structural understanding
of the key characteristics of revenue maximizing auctions is needed. For example,
what is the optimal auction for selling two goods with uniform i.i.d. values to two
buyers? Currently, we don’t even know how to solve this (seemingly) very simple
problem. What would be a good dual solution in this case?

2. (Limits of determinism) As we mentioned in Section 2.4 and also saw in the
results of Chapter 5, lotteries are in general necessary in order to achieve opti-
mality. But what is the actual gap between randomization and determinism, at
least for most “natural” settings? As Hart and Nisan [39] show, that gap can
be arbitrarily unbounded in general; however, this is demonstrated for correlated
items and it is essentially a consequence of the limited menu-size that determin-
istic mechanisms can offer, rather than the lack of random choices itself (see Hart
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and Nisan [40] for a discussion of this). Even the logarithmic impossibility result
of Babaioff et al. [6] for independent items is for many bidders, for the more
restricted class of Partition deterministic auctions, and for a somehow exotic
distribution that uses point masses and assigns almost all probability on point 0.
So, we can start by asking for a lower bound on the performance of deterministic
selling mechanisms against a single buyer and i.i.d. values coming from continu-
ous, regular distributions over real intervals. Or, what if we restrict this question
within simpler classes of deterministic mechanisms, like the ones studied in [6]
or the extremely simple (and economists’ favourite) full-bundling? (See also the
discussion in point 7 below.)

3. (Power of determinism) Following point 2 above, the fact that there are some
separation results, mostly in special, highly item-correlated settings, does not
mean that our hope for well-performing simple deterministic selling mechanisms
is lost. In the contrary actually, the recent constant approximation results of
Babaioff et al. [6] and Yao [80] point in the opposite direction. However, they
are not yet satisfactory enough from a practical point of view: the fact that
full bundling or selling separately can perform at most 6 times worse than the
optimal selling mechanism, might be of limited interest to a real-life auction
designer. However, a result in the spectrum of a 90% guaranteed performance
would be extremely interesting. The careful reader would have already glimpsed
indications of such efficiency of simple deterministic auctions in some parts of
this thesis (see e.g. Figure 6.2 and Section 5.5.1).

4. (Non-regular distributions) Given independence of the valuation priors, the reg-
ularity of the distributions (see Definition 2.6) itself is not a real issue for the
classical results of Myerson [58]; there is an ironing process that can simulate
smoothness of the critical virtual value functions. All known results for opti-
mality in multidimensional auctions, however, do not rely on some unified gen-
eralization of these features, but rather in ad hoc handling of distributions that
satisfy some form of regularity a priori. So, a very important challenge would
be to generalize in the “right” way the idea of Myerson’s virtual valuations and
ironing process in order to handle multiple items.

5. (Correlation) The duality-theory framework that we proposed can readily, in
principle, be used to handle arbitrary correlation among the value priors for the
goods (see Section 3.1). Using that formulation, can we use the experience from
the item-independent solutions of the examples presented throughout the chap-
ters of this thesis, in order to construct good dual solutions to models involving
even limited correlation, e.g. common base-value distributions [16] ? What about
constant approximations by simple deterministic auctions, generalizing the re-
sults of [6]?
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6. (Computational complexity) Although in this work we didn’t directly deal with
computational complexity issues, this is an important consideration to make that,
in addition to the obvious intractability concerns, can also have strong conceptual
correlations in the design of auctions (see also the discussion in point 7 below).
By the work of Chen et al. [17] and Daskalakis et al. [26] we already know that
both finding the optimal deterministic pricing rule for unit-demand valuations
or the optimal randomized selling mechanism for additive ones, even in settings
with a single buyer and independently distributed item values, are computation-
ally hard. But what is the complexity of finding the optimal deterministic selling
mechanism for additive valuations? What about the complexity when restricted
to a specific class of simple deterministic mechanisms? Or to randomized auc-
tions with limited menu-size complexity [39]? These are important questions, the
answers to which would be of particular interest to economists.

7. (Conceptual complexity) Hardness results about optimal auctions with respect to
traditional computational complexity notions [17, 24, 26] are obviously an im-
portant indication of the general difficulty of the problem of multidimensional
revenue maximization. But this is only one side of the story. For instance, the
discovery of a PTAS for an auction setting, does not necessarily mean tractability
in terms of understanding the structure, the characteristics, or even the descrip-
tion, of an actual optimal auction. This is a feature that Hart and Nisan [40]
refer to as conceptual complexity. It is to a great extent intuitive, and has to
yet be formalized through the results that are to come; for instance a first at-
tempt towards that is the menu-size complexity of Hart and Nisan [39]. But
consider for example a setting of m goods and a single buyer. One of the most
natural and straightforward selling strategies to investigate is placing prices on
bundles of items depending only on their cardinalities [19]. The menu-size of this
auction is exponential, namely 2m, however conceptually is a very simple one:
we only need to set m different prices. What is the computational complexity
of such conceptually simple mechanisms? Can we provide optimal solutions for
them? The investigation of simple mechanisms is essential for many reasons, for
instance their ease of description and implementation, their transparency and the
potential for straightforward analysis.

8. (Beyond additive valuations) Throughout this thesis we have assumed that the
players have additive valuations. However, as was briefly mentioned in Sec-
tion 2.3, there are other types of valuation functions that are of interest, most
notably unit-demand ones. These have been studied extensively as well, and
there are some recent exact optimality results (see e.g. the PhD thesis of Hagh-
panah [36]). However, there is still essentially no unified approach between the
two classes of preferences. Thus, a natural research direction would be that of
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developing a duality-theory framework, similar in character to the one presented
here, for the case of unit-demand valuations. Also, what about classes of val-
uations that generalize both additive and unit-demand ones, like k-demand or
gross-substitutes? This is an open question posed by Babaioff et al. [6] in the
context of constant approximations from simple mechanisms, but we would like
to put it forward with respect to exact optimality as well.

9. (Other objectives). The techniques developed here, and in particular the empha-
sis that the duality formulation puts on the analytic aspects of utility functions,
might turn out to be useful in tackling other important mechanism design ob-
jectives, e.g. minimizing the makespan or the max-min fairness in the problem
of scheduling unrelated parallel machines [18]; hints towards such a unified, high-
level approach can be found for example in the work of Cai et al. [14].
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Appendix

A.1 Exact Computation of the Prices for up to 6
Dimensions.

To decongest notation, we will drop the subscript (m) because it will be clear in which
dimension we are working in and we denote v(α1, . . . , αr) = |V (α1, . . . , αr)| where this
body is defined in (4.4) and, as we mentioned after Definition 4.1, we can use the
equivalent to (4.3) condition

v(p1, . . . , pr) = rk

to determine the SJA payments. Also, we set k = 1
m+1 throughout this section.

• r = 1 and any m: As we said before, it is easy to see that for any dimension m,

v(p1) = 1− p1. (A.1)

From this, and applying the transformation (4.6), we solve

v(p1) = 1 · k ⇐⇒ 1− (1− µ1k) = k ⇐⇒ µ1 = 1.

So
p

(m)
1 = m

m+ 1 and µ1 = 1.

For higher orders r > 1 we can utilize the recursive way of computing the expressions
for the volumes vr, given by formula (4.5) and the initial condition (A.1).

• r = 2 and any m: Using the recursive formula (4.5) and (A.1) we can compute
that for every p2 such that 0 ≤ p2 − p1 ≤ p1 it would be

v(p1, p2) =
∫ p2−p1

0
v(p1) dt+

∫ p1

p2−p1
v(p2 − t) dt+

∫ 1

p1
dt = p2

1 + p2
2

2 − 2p1p2 + 1

and by applying the transformation (4.6) and plugging in the already computed
value µ1 = 1 from the previous order r = 1, we get

v(1− µ1k, 2− µ2k) = 2k ⇐⇒ µ2
2 − 4µ2 + 2 = 0 (A.2)
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If we pick the largest root of this equation µ2 = 2 +
√

2 we can see that indeed
condition 0 ≤ p2 − p1 ≤ p1 is respected (it is equivalent to 0 ≤ k ≤ 1/(1 +

√
2)

which holds since k ≤ 1
r+1 and r ≥ 2), so we have computed that for any m

p
(m)
2 = 2m−

√
2

m+ 1 and µ2 = 2 +
√

2 ≈ 3.41421.

• r = 3 and any m: In the same way, using again recursive formula (4.5) and the
volume of the previous order r = 2 from (A.2) we can compute that for every p3

such that 0 ≤ p3 − p2 ≤ p2 − p1 it would be

v(p1, p2, p3) =
∫ p3−p2

0
v(p1, p2) dt+

∫ p2−p1

p3−p2
v(p1, p3−t) dt+

∫ p1

p2−p1
v(p2−t, p3−t) dt+

∫ 1

p1
dt

= 1
6
(
−3p3

1 + 9p2
1p3 + 9p1

(
2p2

2 − 4p2p3 + p2
3

)
− 6p3

2 + 9p2
2p3 − p3

3 + 6
)

(A.3)

and by applying the transformation (4.6) and plugging in the already computed
values for µ1 = 1 and µ2 = 2 +

√
2 from the previous orders, we get

v(1− µ1k, 2− µ2k, 3− µ3k) = 3k ⇐⇒ µ3
3 − 9µ2

3 + 9µ3 + 12
√

2 + 15 = 0 (A.4)

If we pick the largest again root of this equation

µ3 =
3
√

6− 6
√

2 + 6i
√

3 + 2
√

2 + 62/3

3
√

1−
√

2 + i
√

3 + 2
√

2
+ 3 ≈ 7.09717

we can see that indeed condition 0 ≤ p3−p2 ≤ p2−p1 is respected (it is equivalent
to 0 ≤ k ≤ 0.271521 which holds since k ≤ 1

r+1 and r ≥ 3), so we have computed
that for any m

p
(m)
3 ≈ 3− 7.09717

m+ 1 and µ3 ≈ 7.09717.

• r = 4 and any m: Continuing up the same way, we compute that for every p4

such that 0 ≤ p4 − p3 ≤ p3 − p2 it is

v(p1, p2, p3, p4) =
∫ p4−p3

0
v(p1, p2, p3) dt+

∫ p3−p2

p4−p3
v(p1, p2, p4 − t) dt

+
∫ p2−p1

p3−p2
v(p1, p3 − t, p4 − t) dt+

∫ p1

p2−p1
v(p2 − t, p3 − t, p4 − t) dt+

∫ 1

p1
dt
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which equals

1
24
(
4p4

1 − 16p3
1p4 − 24p2

1

(
3p2

3 − 6p3p4 + 2p2
4

)
− 16p1

(
3p3

2 − 9p2
2p4 − 9p2

(
2p2

3 − 4p3p4 + p2
4

)
+6p3

3 − 9p2
3p4 + p3

4

)
+ 18p4

2 − 48p3
2p4 − 36p2

2

(
2p2

3 − 4p3p4 + p2
4

)
+ 12p4

3 − 16p3
3p4 + p4

4 + 24
)
.

(A.5)

By applying the transformation (4.6), plugging in the already computed values for
µ1 = 1 and µ2 = 2 +

√
2 and using the fact that µ3 is the root of Equation (A.4),

we get that equation v(1− µ1k, 2− µ2k, 3− µ3k, 4− µ4k) = 4k is equivalent to

µ4
4− 16µ3

4 + 24µ2
4 + 96

√
2µ4 + 128µ4 + 72µ2

3− 144
√

2µ3− 288µ3 + 48
√

2 + 88 = 0.
(A.6)

If we pick the largest again root µ4 ≈ 11.9972 of this equation we can see that
indeed condition 0 ≤ p4 − p3 ≤ p3 − p2 is respected (it is equivalent to 0 ≤ k ≤
0.204082 which holds since k ≤ 1

r+1 and r ≥ 4), so we have computed that for
any m

p
(m)
4 ≈ 4− 11.9972

m+ 1 and µ4 ≈ 11.9972.

• r = 5 and m = 5: At this point we need to modify a little bit our procedure of
computing the volumes in the usual recursive way, and consider the case where
the new p5 price is such that p3 ≤ p5 ≤ p4 instead of p5 ≥ p4 (and in fact the
even stronger condition that p5 − p4 ≤ p4 − p3). This is again a straightforward
calculation, since as we argued before, v(p1, p2, p3, p4, p5) = v(p1, p2, p3, p5, p5) and
so

v(p1, p2, p3, p4, p5) =
∫ p5−p3

0
v(p1, p2, p3, p5−t) dt+

∫ p3−p2

p5−p3
v(p1, p2, p5−t, p5−t) dt

+
∫ p2−p1

p3−p2
v(p1, p3−t, p5−t, p5−t) dt+

∫ p1

p2−p1
v(p2−t, p3−t, p5−t, p5−t) dt+

∫ 1

p1
dt

which equals

1
120

(
−5p5

1 + 25p4
1p5 − 50p3

1p
2
5 + 50p2

1

(
6p3

3 − 18p2
3p5 + 18p3p

2
5 − 5p3

5

)
+ 25p1

(
4p4

2 − 16p3
2p5

+24p2
2p

2
5 − 16p2

(
3p3

3 − 9p2
3p5 + 9p3p

2
5 − 2p3

5

)
+ 18p4

3 − 48p3
3p5 + 36p2

3p
2
5 − 3p4

5

)
− 2

(
20p5

2

−75p4
2p5 + 100p3

2p
2
5 − 50p2

2

(
3p3

3 − 9p2
3p5 + 9p3p

2
5 − 2p3

5

)
+ 30p5

3 − 75p4
3p5 + 50p3

3p
2
5 − 2p5

5 − 60
))
(A.7)

By applying the transformation (4.6), plugging in the already computed values for
µ1 = 1 and µ2 = 2 +

√
2 and using the fact that µ3 is the root of Equation (A.4),

we get that equation v(1−µ1k, 2−µ2k, 3−µ3k, 5−µ5k, 5−µ5k) = 5k is equivalent
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to

4µ5
5−225µ4

5+4350µ3
5+800

√
2µ2

5−34950µ2
5+900µ5µ

2
3−1800

√
2µ5µ3−3600µ5µ3−14600

√
2µ5

+121175µ5+720
√

2µ2
3−14220µ2

3+22680
√

2µ3+49680µ3+41080
√

2−161215 = 0
(A.8)

If we pick the second largest root µ5 ≈ 18.0865 of this equation we can see that
indeed condition p3 ≤ p5 ≤ p4 is respected (it is equivalent to 0.16422 ≤ k ≤
0.181994 which holds since k = 1

m+1 and m = 5), so we have computed that for
m = 5

p
(5)
5 ≈ 5− 18.0865

6 = 1.98558 and µ
(5)
5 ≈ 18.0865.

• r = 5 and any m ≥ 6: We can compute that for every p5 such that 0 ≤ p5− p4 ≤
p4 − p3 it is

v(p1, p2, p3, p4, p5) =
∫ p5−p4

0
v(p1, p2, p3, p4) dt+

∫ p4−p3

p5−p4
v(p1, p2, p3, p5 − t) dt

+
∫ p3−p2

p4−p3
v(p1, p2, p4 − t, p5 − t) dt+

∫ p2−p1

p3−p2
v(p1, p3 − t, p4 − t, p5 − t) dt

+
∫ p1

p2−p1
v(p2 − t, p3 − t, p4 − t, p5 − t) dt+

∫ 1

p1
dt

which equals

1
120

(
−5p5

1 + 25p4
1p5 + 50p3

1

(
4p2

4 − 8p4p5 + 3p2
5

)
+ 50p2

1

(
6p3

3 − 18p2
3p5 − 18p3

(
2p2

4

−4p4p5 + p2
5

)
+ 16p3

4 − 24p2
4p5 + 3p3

5

)
+ 25p1

(
4p4

2 − 16p3
2p5 − 24p2

2

(
3p2

4 − 6p4p5 + 2p2
5

)
−16p2

(
3p3

3 − 9p2
3p5 − 9p3

(
2p2

4 − 4p4p5 + p2
5

)
+ 6p3

4 − 9p2
4p5 + p3

5

)
+ 18p4

3 − 48p3
3p5

−36p2
3

(
2p2

4 − 4p4p5 + p2
5

)
+ 12p4

4 − 16p3
4p5 + p4

5

)
− 40p5

2 + 150p4
2p5 + 200p3

2

(
3p2

4

−6p4p5 + 2p2
5

)
+ 100p2

2

(
3p3

3 − 9p2
3p5 − 9p3

(
2p2

4 − 4p4p5 + p2
5

)
+ 6p3

4 − 9p2
4p5 + p3

5

)
−60p5

3 + 150p4
3p5 + 200p3

3p
2
4 − 400p3

3p4p5 + 100p3
3p

2
5 − 20p5

4 + 25p4
4p5 − p5

5 + 120
)

(A.9)

By applying the transformation (4.6), plugging in the already computed values
for µ1 = 1 and µ2 = 2+

√
2 and using the fact that µ3 is the root of Equation (A.4)

and µ4 is the root of (A.6), we get that equation v(1− µ1k, 2− µ2k, 3− µ3k, 4−

132



µ4k, 5− µ5k) = 5k is equivalent to

µ5
5−25µ4

5+50µ3
5−100µ2

5µ
3
3+900µ2

5µ
2
3−900µ2

5µ3−800
√

2µ2
5−950µ2

5−150µ5µ
4
3+400µ5µ

3
3µ4

+1200µ5µ
3
3−3600µ5µ

2
3µ4−900µ5µ

2
3+3600µ5µ3µ4−25µ5µ

4
4+400µ5µ

3
4−600µ5µ

2
4+2400

√
2µ5µ4

+2800µ5µ4−1600
√

2µ5−2225µ5+60µ5
3−150µ4

3−200µ3
3µ

2
4−400µ3

3µ4−1900µ3
3+1800µ2

3µ
2
4+3600µ2

3µ4

−1800µ3µ
2
4−3600µ3µ4+1800µ3+20µ5

4−275µ4
4−1200

√
2µ2

4−800µ2
4−2400

√
2µ4−2800µ4+8960

√
2

+ 12185 = 0. (A.10)

If we pick the largest again (real) root µ5 ≈ 18.0843 of this equation we can
see that indeed condition 0 ≤ p5 − p4 ≤ p4 − p3 is respected (it is equivalent to
0 ≤ k ≤ 0.16428 which holds since k ≤ 1

m+1 and m ≥ 6), so we have computed
that for any m ≥ 6

p
(m)
5 ≈ 5− 18.0843

m+ 1 and µ
(m)
5 ≈ 18.0843.

• r = 6 and m = 6: If the new p6 price is such that p4 ≤ p6 ≤ p5, similar to the
case of r = m = 5, we have that v(p1, p2, p3, p4, p5, p6) = v(p1, p2, p3, p4, p6, p6)
and so

v(p1, p2, p3, p4, p5, p6) =
∫ p6−p4

0
v(p1, p2, p3, p4, p6−t) dt+

∫ p4−p3

p6−p4
v(p1, p2, p3, p5−t, p5−t) dt

+
∫ p3−p2

p4−p3
v(p1, p2, p4−t, p6−t, p6−t) dt+

∫ p2−p1

p3−p2
v(p1, p3−t, p4−t, p6−t, p6−t) dt

+
∫ p1

p2−p1
v(p2 − t, p3 − t, p4 − t, p6 − t, p6 − t) dt+

∫ 1

p1
dt

which equals

1
720

(
6p6

1 − 36p5
1p6 + 90p4

1p
2
6 − 120p3

1

(
10p3

4 − 30p2
4p6 + 30p4p

2
6 − 9p3

6

)
− 90p2

1

(
10p4

3 − 40p3
3p6

+60p2
3p

2
6 − 40p3

(
3p3

4 − 9p2
4p6 + 9p4p

2
6 − 2p3

6

)
+ 60p4

4 − 160p3
4p6 + 120p2

4p
2
6 − 11p4

6

)
− 36p1

(
5p5

2

−25p4
2p6 + 50p3

2p
2
6 − 50p2

2

(
6p3

4 − 18p2
4p6 + 18p4p

2
6 − 5p3

6

)
− 25p2

(
4p4

3 − 16p3
3p6 + 24p2

3p
2
6

−16p3
(
3p3

4 − 9p2
4p6 + 9p4p

2
6 − 2p3

6

)
+ 18p4

4 − 48p3
4p6 + 36p2

4p
2
6 − 3p4

6

)
+ 2

(
20p5

3 − 75p4
3p6

+100p3
3p

2
6 − 50p2

3

(
3p3

4 − 9p2
4p6 + 9p4p

2
6 − 2p3

6

)
+ 30p5

4 − 75p4
4p6 + 50p3

4p
2
6 − 2p5

6

))
+ 5

(
15p6

2

−72p5
2p6 + 135p4

2p
2
6 − 120p3

2

(
6p3

4 − 18p2
4p6 + 18p4p

2
6 − 5p3

6

)
− 45p2

2

(
4p4

3 − 16p3
3p6 + 24p2

3p
2
6−

16p3
(
3p3

4 − 9p2
4p6 + 9p4p

2
6 − 2p3

6

)
+ 18p4

4 − 48p3
4p6 + 36p2

4p
2
6 − 3p4

6

)
+ 40p6

3 − 144p5
3p6 + 180p4

3p
2
6

−80p3
3

(
3p3

4 − 9p2
4p6 + 9p4p

2
6 − 2p3

6

)
+ 30p6

4 − 72p5
4p6 + 45p4

4p
2
6 − p6

6 + 144
))

(A.11)

By applying the transformation (4.6), plugging in the already computed values
for µ1 = 1 and µ2 = 2+

√
2 and using the fact that µ3 is the root of Equation (A.4)

133



and µ4 is the root of (A.6) , we get that equation v(1−µ1k, 2−µ2k, 3−µ3k, 4−
µ4k, 6− µ6k, 6− µ6k) = 6k is equivalent to

µ6
6−36µ5

6+270µ4
6−160µ3

6µ
3
3+1440µ3

6µ
2
3−1440µ3

6µ3−1200
√

2µ3
6−2160µ3

6−180µ2
6µ

4
3+720µ2

6µ
3
3µ4

+2160µ2
6µ

3
3−6480µ2

6µ
2
3µ4−7560µ2

6µ
2
3+6480µ2

6µ3µ4+6480µ2
6µ3−45µ2

6µ
4
4+720µ2

6µ
3
4−1080µ2

6µ
2
4

+4320
√

2µ2
6µ4+5040µ2

6µ4+4320
√

2µ2
6+5760µ2

6+144µ6µ
5
3−720µ6µ

3
3µ

2
4−2880µ6µ

3
3µ4−8640µ6µ

3
3

+6480µ6µ
2
3µ

2
4+25920µ6µ

2
3µ4+12960µ6µ

2
3−6480µ6µ3µ

2
4−25920µ6µ3µ4−6480µ6µ3+72µ6µ

5
4

−900µ6µ
4
4−1440µ6µ

3
4−4320

√
2µ6µ

2
4−720µ6µ

2
4−17280

√
2µ6µ4−20160µ6µ4+8928

√
2µ6+13104µ6

−40µ6
3−144µ5

3+1440µ4
3+240µ3

3µ
3
4+1440µ3

3µ
2
4+2880µ3

3µ4+10560µ3
3−2160µ2

3µ
3
4−12960µ2

3µ
2
4

−25920µ2
3µ4−7560µ2

3+2160µ3µ
3
4+12960µ3µ

2
4+25920µ3µ4−2160µ3−30µ6

4+288µ5
4+1440µ4

4

+1440
√

2µ3
4+1680µ3

4+8640
√

2µ2
4+5760µ2

4+17280
√

2µ4+20160µ4−42048
√

2−58344 = 0
(A.12)

If we pick the second largest root µ6 ≈ 25.3585 of this equation we can see that
indeed condition p4 ≤ p6 ≤ p5 is respected (it is equivalent to 0.137473 ≤ k ≤
0.149686 which holds since k = 1

m+1 and m = 6), so we have computed that for
m = 6

p
(6)
6 ≈ 6− 25.3585

7 = 2.37736 and µ
(6)
6 ≈ 25.3585.

A.2 An Alternative Explicit Dual Solution for Two
Uniform Goods

In this section we provide an alternative optimal dual solution to these given previously
in Chapter 4 and Section 5.6, for the case of two uniformly i.i.d. goods over the unit
interval [0, 1]. In the former, we proved the existence of a proper dual solution that
matched, through approximate complementarity, the primal one given by the SJA
selling mechanism, while in the latter we explicitly constructed a dual solution that
was shown to be optimal by exact complementarity. The reason we choose to present
here one more dual solution is that it is rather different in character and we believe
it demonstrates certain subtle features of the duality framework that are of interest;
first, the two components (z1, z2) of our dual solution here are highly non-symmetric,
meaning that z1(x1, x2) 6= z2(x2, x1). The solutions in the main part of this thesis avoid
this, for reasons of simplicity and generality, however we think it is important to make
clear that symmetry is not a requirement and, furthermore, the optimal dual value
can be achieved by various, completely different, feasible dual solutions. Secondly,
the solution will demonstrate a degree of non-continuity: remember that we demand
our dual solutions zj to be absolutely continuous with respect to their critical j-th
component, however it is perfectly acceptable to have discontinuities with respect to
their other coordinates as long as the functions remain integrable in the domain (see
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Footnote 3). This was not made explicit via the solution given in Section 5.6, which
was quite smooth. Finally, here we don’t utilize complementarity, but simple weak
duality to show optimality: we give a dual solution depending on a small parameter ε,
prove that it gives rise to a dual value which is O(ε) close to the primal one, and take
ε→ 0 to establish optimality.

First, recall that we already know that in our setting of two uniform i.i.d. goods
the optimal selling mechanism is the one given by the utility function

u(x1, x2) = max
x∈I2
{0, x1 − α, x2 − α, x1 + x2 − β} , (A.13)

where parameters α and β are selected to be

α = 2
3 and β = 4−

√
2

3 ,

i.e. β being the a root of 9x2−24x+14 in [0, 2α]. You can see a graphical representation
of the allocation function and payment p of this mechanism in Figure A.1. It is the
symmetric deterministic one that offers either each one of the items for a price of 2

3 or
their full bundle for a price of 4−

√
2

3 ≈ 0.862.
Next, we are going to construct the family of our dual feasible solutions z1, z2 :

I2 −→ R≥0. Fix a parameter ε > 0 with α ≤ 1− ε < 1 and define:

z1(x1, x2) =



3
2εx

2
1 + 2−3β

ε
x1 + (α−β)(4−3α−3β)

2ε , β − α ≤ x1 ≤ α ∧ 1− ε ≤ x2 ≤ 1,

−1−3ε
ε
x1 + 3β2−4β+10α−6αβ−6αε

2ε , α < x1 ≤ 1 ∧ 1− ε < x2 ≤ 1,

3(x1 − α), α < x1 ≤ 1 ∧ 0 ≤ x2 ≤ 1− ε,

0, otherwise,

and

z2(x1, x2) =



3(x2 − α), 0 ≤ x1 ≤ β − α ∧ α ≤ x2 ≤ 1,

3(x1 + x2 − β), α− β < x1 ≤ α ∧ β − x1 ≤ x2 ≤ 1− ε,
3(x1−β−ε)+2

ε
(1− x2) + 1, α− β < x1 ≤ α ∧ 1− ε < x2 ≤ 1,

x2+ε−1
ε

, α < x1 ≤ 1 ∧ 1− ε < x2 ≤ 1,

0, otherwise.

Note that z1(0, x2) = 0 and z2(x1, 0) = 0 for all x1, x2 ∈ I, trivially by definition,
satisfying the first dual constraint (6.1). Then, we compute

z1(1, x2) =

3(1− α) + 3β2−4β+10α−6αβ−2
2ε , 1− ε < x2 ≤ 1,

3(1− α), 0 ≤ x2 ≤ 1− ε,
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x1

x2

0 α 1

α

β − α

β − α

1

(0, 0)

(1, 1), p=β

x+ y = β

(0, 1), p=α

(1, 0), p=α

Figure A.1: The optimal mechanism for selling two uniform i.i.d. goods over [0, 1].

and

z2(x1, 1) =

3(1− α), 0 ≤ x1 ≤ β − α,

1, α− β < x1 ≤ 1,

for all x1, x2 ∈ I. Thus, since α = 2
3 and β is the root of 9x2 − 24x + 14 we ensure

that z1(1, x2) = 1 and z2(x1, 1) = 1 for all x1, x2 ∈ I, satisfying the second dual
constraint (6.2). Also, it is not difficult to check that z1 and z2 take only nonnegative
values. Furthermore, z1 is absolutely continuous with respect to its first coordinate
x1 and only discontinuous at the line segment x2 = 1 − ε ∧ β − α < x2 < 1 which
is a set of measure 0 within I2, thus z1 is integrable in I2. Similarly, z2 is absolutely
continuous with respect to its second coordinate x2 and only discontinuous at the line
segment x1 = α ∧ β − α < x1 < 1. An illustration of the critical regions of z1 and z2

and their values is given in Figures A.2 and A.3, respectively.
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x1

x2

0 α 1

1− ε

β − α

1

0

0 3
2εx

2
1 + 2−3β

ε
x1 + (α−β)(4−3α−3β)

2ε −1−3ε
ε

x1+3β2−4β+10α−6αβ−6ε
2ε

3(x1 − α)

Figure A.2: The critical regions of the dual solution z1

In addition, z1 and z2 are almost everywhere differentiable in I2 with:

∂z1(x1, x2)
∂x1

=



3
ε
x1 + 2−3β

ε
, β − α ≤ x1 ≤ α ∧ 1− ε ≤ x2 ≤ 1,

3− 1
ε
, α < x1 ≤ 1 ∧ 1− ε < x2 ≤ 1,

3, α < x1 ≤ 1 ∧ 0 ≤ x2 ≤ 1− ε,

0, otherwise,
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x1

x2

0 α 1

1− ε

α

β − α

β − α

1

0

3(x2 − α)

3(x1−β−ε)+2
ε

(1− x2) + 1

3(x1 + x2 − β)

x2+ε−1
ε

0

x + y = β

Figure A.3: The critical regions of the dual solution z2

and

∂z2(x1, x2)
x2

=



3, 0 ≤ x1 ≤ β − α ∧ α ≤ x2 ≤ 1,

3, α− β < x1 ≤ α ∧ β − x1 ≤ x2 ≤ 1− ε,

−3(x1−β−ε)+2
ε

, α− β < x1 ≤ α ∧ 1− ε < x2 ≤ 1,
1
ε
, α < x1 ≤ 1 ∧ 1− ε < x2 ≤ 1,

0, otherwise,

so by summing up in the various subregions of I2 we immediately get that also condi-
tion (6.3) is satisfied. Finally, it remains to compute the dual value (6.4) for the current
choice of z1 and z2 and prove that it provides a tight upper bound on the revenue of
the deterministic auction induced by the utility function in (A.13), which is (consult
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Figure A.1)

2
∫ 1

α

∫ β−α

0
α dx2 dx1 +

∫ 1

β−α

∫ 1

α
β dx2 dx1 +

∫ α

β−α

∫ 1

β−x2
β dx1 dx2

which equals
2α3 − α2(3β + 2) + 4αβ + 1

2β
(
β2 − 4β + 2

)
. (A.14)

We now compute the dual objective value (consult Figures A.2 and A.3):

∫ 1

0

∫ 1

0
z1(x1, x2) =

∫ 1

1−ε

∫ α

β−α

3
2εx

2
1 + 2− 3β

ε
x1 + (α− β)(4− 3α− 3β)

2ε dx1 dx2

+
∫ 1

1−ε

∫ 1

α
−1− 3ε

ε
x1 + 3β2 − 4β + 10α− 6αβ − 6ε

2ε dx1 dx2 +
∫ 1−ε

0

∫ 1

α
3(x1 − α) dx1 dx2

= −2α3 + 3α2β + α2 − 5αβ + 2α− β3

2 + 5β2

2 − 2β + 1

and
∫ 1

0

∫ 1

0
z2(x1, x2) =

∫ 1

α

∫ β−α

0
3(x2 − α) dx2 dx1 +

∫ α

β−α

∫ 1−ε

β−x1
3(x1 + x2 − β) dx2 dx1

+
∫ α

β−α

∫ 1

1−ε

3(x1 − β − ε) + 2
ε

(1− x2) + 1 dx2 dx1 +
∫ 1

α

∫ 1

1−ε

x2 + ε− 1
ε

dx2 dx1

= 1
4
(
−2α3 + 12α2 + 6αβ2 − 24αβ + 6α− 2β3 + 6β2

)
+ 1

4ε
(
2α(3β − 5)− 3β2 + 4β + 2

)
By summing up and letting ε→ 0, objective (6.4) is

∫ 1

0

∫ 1

0
z1(x1, x2) + z2(x1, x2) dx1 dx2 = 1

2
(
−5α3 + α2(6β + 8) + α

(
3β2 − 22β + 7

)
− 2β3 + 8β2 − 4β + 2

)
+O(ε). (A.15)

By taking expressions (A.14) and (A.15) to be equal we get equation

9α3 + α
(
−3β2 + 30β − 7

)
+ 3β3 + 6β = 12α2(β + 1) + 12β2 + 2,

which for α = 2
3 becomes

(β − 2)(9β2 − 24β + 14) = 0,

thus being satisfied by our initial choice of α and β.

A.3 General k-Regularity

In this section we present a theory of regularity for the distributional priors of the
bids, which generalizes the traditional notion of regularity used by Myerson [58] (see
Definition 2.6). This is going to allow us to generalize the construction we used in
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Section 6.1 to prove good upper bounds for any number m of uniformly distributed
goods, to the case of general k-regular distributions in Appendix A.3.2. We choose to
make a full discussion and exposition of this idea in this appendix, since we believe it
may contain ideas to help with the development of non-trivial optimality results for
general distributions and multiple items and players, which is the main challenging
open problem in the field.

A.3.1 Regular distributions

Now we define our generalized notion of k-regularity, inspired by the techniques in
Section 6.1:

Definition A.1 (k-Regularity). Let m, k be positive integers such that 1 ≤ k ≤ m. A
distribution F on I will be called k-regular, if the order-k virtual valuation induced,
defined by

kṽ = kṽ(x) ≡ x− dk
1− F (x)
f(x) ,

is a strictly1 increasing function, where

dk ≡
m+ 1
k
− 1.

In case of k-regular distributions we will call k-regular root, denoted by kx̃
∗, the (unique)

root of kṽ in I.

Definition A.2. Let m, k be positive integers such that 1 ≤ k ≤ m. We define the
positive projection of the order-k virtual valuation kṽ as the function

kṼ ≡ max {0, kṽ} = max
{

0, x− dk
1− F (x)
f(x)

}
, x ∈ I.

In case of k-regular distributions this can be expressed as

kṼ (x) =

0, if 0 ≤ x < kx̃
∗,

x− dk 1−F (x)
f(x) , if kx̃

∗ ≤ x ≤ 1.

We extend the above definitions to the special case of k = 0 by defining d0 ≡ 1. In
this case, we will call 0-regular distributions simply regular, since this coincides with
the standard definition of regularity in [58], and drop the subscript k.

An important example of k-regular (and regular) distribution is the uniform distri-
1Weak monotonicity can easily be incorporated in our exposition, however we choose to not allow

it for reasons of simplicity when defining the notion of k-regular root (see below). One can redefine
this to be the leftmost root of the virtual valuation and appropriately adapt the analysis.
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bution U , for which we have

kṽ(x) = m+ 1
k

x+ 1− m+ 1
k

and kx̃
∗ = 1− k

m+ 1 (A.16)

for k ≥ 1 and ṽ(x) = 2x− 1, x̃∗ = 1
2 .

A.3.2 Bounds on Optimal Revenue

No we use weak duality to get upper-bound formulas for the optimal revenue in two
settings of gradually increasing specialization: first for general, m-regular (not neces-
sarily identical) distributional priors (Theorem A.2) and then for i.i.d. k-regular (for
all k ∈ [m]) ones (Theorem A.3). For ease of reference, let us restate the Weak Duality
Lemma 3.1 (see also the dual Program (3.5)) for our particular case of independent
valuations over I. The valuation of item j is drawn from distribution Fj, and their
product is denoted by F = ∏m

j=1 Fj.

Theorem A.1 (Weak Duality for independent goods over I). The dual constraints for
a single buyer and m independent goods over Im become:

zj(0,x−j) = 0, for all j ∈ [m], (A.17)

zj(x−j, 1) ≥ fj(1)
∏
k 6=j

fk(xk), for all j ∈ [m], (A.18)

m∑
j=1

∂zj(x)
∂xj

≤
m∏
j=1

fj(xj) +
m∑
j=1

(xjfj(xj))′
∏
k 6=j

fk(xk)
 , (A.19)

and the dual objective upper-bounds optimal revenue:

Rev (F ) ≤
m∑
j=1

∫
Im
zj(x) dx. (A.20)

Theorem A.2. Any selling mechanism for m independent goods has an expected rev-
enue of at most

Rev(F ) ≤
m∑
j=1

E
[
mṼj

]
where mVj’s are the positive projections of the order-m virtual valuations (see Defini-
tion A.2).

In case of m-regular distributions this becomes

m∑
j=1

∫ 1

mx̃∗j

xfj(x)− 1− Fj(x)
m

dx,

where mx̃
∗ is the m-regular root (see Definitions A.1 and A.2).

Proof. We are going to construct feasible zj’s, j = 1, 2, . . . ,m, to plug them into
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Theorem A.1. Set

zj(x) =
m∏
j=1

fj(xj)
(

max
{

0, x− 1− Fj(x)
mfj(x)

})
=

m∏
j=1

fj(xj)mṼj(xj).

It is easy to check that this choice of zj’s satisfies conditions (A.19)–(A.18), thus giving
an upper bound on the optimal expected revenue of (see equation (A.20))

∫
[0,1]m

m∑
j=1

zj(x) dx =
m∑
j=1

∫
[0,1]m

m∏
j=1

fj(xj)mṼj(xj) dx

=
m∑
j=1

∫
[0,1]m−1

∏
k 6=j

fk(xk) dx−j
∫ 1

0
fj(xj)mṼj(xj) dxj


=

m∑
j=1

∫ 1

0
mṼj(xj)fj(xj) dxj (A.21)

=
m∑
j=1

E
[
mṼj

]
.

In case of m-regular distributions, equation (A.21) gives

m∑
j=1

∫ 1

0
mṼj(xj)fj(xj) dxj =

m∑
j=1

∫ 1

mx̃∗j
mṼj(x)fj(x) dx =

m∑
j=1

∫ 1

mx̃∗j

xfj(x)− 1− Fj(x)
m

dx.

For example, for the case of uniform distributions Theorem A.2 would give an upper
bound of (see equation (A.16)) Rev(Um) ≤ m

∫ 1
1

m+1

m+1
m
x− 1

m
dx = m2

2(1+m) . This slightly
improves the trivial upper bound of m

2 taken by the IR constraint2 but it is still not
as good as the bound from Theorem 6.2. That improved theorem is a specialization of
the general dual-construction technique given by the following:

Theorem A.3. Any selling mechanism for m i.i.d. goods following a regular and k-
regular (for all k = 1, 2, . . . ,m) distribution F has an expected revenue of at most:

Rev(Fm) ≤ F (mx̃∗)m−1
m∑
k=1

(
m

k

)
k

(
1

F (mx̃∗)
− 1

)k−1 ∫ 1

kx̃∗
xf(x)− dk(1− F (x)) dx

Proof. (As a warm-up for this general proof, the reader can find a proof of this theorem
for the special case of uniform i.i.d. distributions given in Section 6.1 of the thesis.)
The fact that the goods are identical is only used at the last part of the computation
of the actual dual objective, so trying to leave our construction as general as possible,
until then we will consider that the valuation of item j comes from distribution Fj,
and later we will replace F = F1 = · · · = Fm.

2See the discussion after Theorem 6.2.
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Again, we will construct feasible solutions zj, for Theorem A.1. Fix regular and
k-regular (for all orders k = 1, 2, . . . ,m) valuation distributions F1, F2, . . . , Fm. For
every node v = (v1, v2, . . . , vm) ∈ Im of the m-dimensional unit hypercube define Lx

to be the following subspace of Im:

Lv = {(x1, x2, . . . , xm) ∈ Im | xj ∈ [0,mx̃∗] if vj = 0 and xj ∈ (mx̃∗, 1] if vj = 1, j ∈ [m]}

Due to the regularity of the distributions, it is a simple observation that Lv’s form a
valid partition of Im, i.e.

v,v′ ∈ Im ∧ v 6= v′ =⇒ Lv ∩ Lv′ = ∅ and
⋃

v∈Im
Lv = Im

Fix some item j ∈ [m] and a subspace Lv ⊆ Im (by fixing a v = (v1, v2, . . . , vm) ∈
Im) and define zj : Lv −→ R≥0 as follows:

• If vj = 0, set zj(x) = 0 for all x ∈ Lv.

• Otherwise, i.e. if vj = 1, set

zj(x) =
m∏
j=1

fj(xj)kṼj(xj) =

0, if mx̃
∗
j ≤ xj < kx̃

∗
j ,∏

l 6=j fl(xl) [xjfj(xj)− dk(1− Fj(x))] , if kx̃
∗
j ≤ xj ≤ 1.

for all x ∈ Lv, where
k = k(v) =

m∑
j=1

vj.

By this construction, and by letting v range over Im, we have a well defined function
zj : [0, 1]m −→ R≥0. Each x ∈ [0, 1]m belongs to a unique partition Lv (corresponding
to a unique v = v(x)), thus also well defining k = k(x). This is because kx̃

∗
j ’s are

“well-ordered”, i.e.

mx̃
∗
j ≤ k+1x̃

∗
j ≤ kx̃

∗
j ≤ 1x̃

∗
j for all k = 1, 2, . . . ,m− 1,

since the order k virtual valuations kṽj are non-decreasing functions with kṽj ≤ k+1ṽj

(because dk ≤ dk+1), for all k = 1, 2, . . . ,m−1. So, the above definition can be written
more compactly as

zj(x) =
m∏
j=1

fj(xj)kṼj(xj) =

0, if 0 ≤ xj < kx̃
∗
j ,∏

l 6=j fl(xl) [xjfj(xj)− dk(1− Fj(x))] , if kx̃
∗
j ≤ xj ≤ 1.

It is easy to check, directly from this definition, that

zj(0, x−j) = 0 and zj(1, x−j) = fj(1)
∏
k 6=j

fk(xk) (A.22)
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for all j ∈ [m] and x−j ∈ Im−1, and also that

∂zj(x)
∂xj

=

0, if 0 < xj ≤ kx̃
∗
j ,∏

l 6=j fl(xl) [(xjfj(xj))′ + dkfj(xj)] , if kx̃
∗
j < xj ≤ 1

=

0, if 0 < xj ≤ kx̃
∗
j ,∏

l 6=j fl(xl)
[
xjf

′
j(xj) + (dk + 1)fj(xj)

]
, if kx̃

∗
j < xj ≤ 1

=

0, if 0 < xj ≤ kx̃
∗
j ,

m+1
k

∏m
l=1 fl(xl) + xjf

′
j(xj)

∏
l 6=j fl(xl), if kx̃

∗
j < xj ≤ 1.

(A.23)

Furthermore, if we fix some x ∈ Im (and thus also fix the corresponding, well-
defined, v = v(x) ∈ Im and k = ∑m

j=1 vj), we see from property (A.23) above that

m∑
j=1

∂zj(x)
∂xj

≤
m∑
j=1

vj
m+ 1
k

m∏
l=1

fl(xl) +
m∑
j=1

xjf
′
j(xj)

∏
l 6=j
fl(xl)

= m+ 1
k

m∑
j=1

vj
m∏
l=1

fl(xl) +
m∑
j=1

xjf
′
j(xj)

∏
l 6=j
fl(xl)

= m+ 1
k

k
m∏
l=1

fl(xl) +
m∑
j=1

xjf
′
j(xj)

∏
l 6=j
fl(xl)

=
m∏
j=1

fj(xj) +
m∑
j=1

(
fj(xj) + xjf

′
j(xj)

)∏
l 6=j
fl(xl)

=
m∏
l=1

fl(xl) +
m∑
j=1

(xjfj(xj))′
∏
l 6=j
fl(xl). (A.24)

But now (A.22) and (A.24) are exactly properties (A.17), (A.18) and (A.19) of
Theorem A.1.

The last remaining step of our proof is to evaluate the dual objective value. As-
suming identical distributions this is:

∫
Im

m∑
j=1

zj(x) dx =
∑

v∈Im

∫
Lv

m∑
j=1

zj(x) dx

=
∑

v∈Im

∫
Lv

∑
j:vj=1

zj(x) dx

=
m∑
κ=1

∑
v:k(v)=κ

∫
Lv

∑
j:vj=1

zj(x) dx

=
m∑
κ=1

(
m

κ

)∫
mx̃∗

0
· · ·

∫
mx̃∗

0

∫ 1

kx̃∗
· · ·

∫ 1

kx̃∗

∑
j:vj=1

zj(x) dx

=
m∑
k=1

(
m

k

)∫
mx̃∗

0
· · ·

∫
mx̃∗

0

∫ 1

kx̃∗
· · ·

∫ 1

kx̃∗

∑
j:vj=1

∏
l 6=j
fl(xl) (xjf(xj)− dk(1− F (x))) dx

=
m∑
k=1

(
m

k

)(∫
mx̃∗

0
f(x) dx

)m−k ∑
j:vj=1

∫ 1

kx̃∗
· · ·

∫ 1

kx̃∗

∏
l 6=j
fl(xl) (xjf(xj)− dk(1− F (x))) dx
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=
m∑
k=1

(
m

k

)(∫
mx̃∗

0
f(x) dx

)m−k
k
(∫ 1

mx̃∗
f(x) dx

)k−1 ∫ 1

kx̃∗
xf(x)− dk(1− F (x)) dx

=
m∑
k=1

(
m

k

)
F (mx̃∗)m−kk (1− F (mx̃∗))k−1

∫ 1

kx̃∗
xf(x)− dk(1− F (x)) dx

= F (mx̃∗)m−1
m∑
k=1

(
m

k

)
F (mx̃∗)1−kk (1− F (mx̃∗))k−1

∫ 1

kx̃∗
xf(x)− dk(1− F (x)) dx

= F (mx̃∗)m−1
m∑
k=1

(
m

k

)
k

(
1

F (mx̃∗)
− 1

)k−1 ∫ 1

kx̃∗
xf(x)− dk(1− F (x)) dx.

A.4 An Explicit, Almost Optimal Dual Solution for
Two Exponential Goods

In this section we present an almost optimal, 1.0033–approximate selling mechanism
for the case of two goods with valuations following independent, but nonidentical, ex-
ponential distributions F1(x) = 1−eλ1x, F2(x) = 1−eλ2x, where without loss we assume
λ1 > λ2 > 0. Notice that if λ1 = λ2 we already know that deterministically selling in
a full bundle is optimal, from Theorem 6.6. The mechanism is a randomized one that,
depending one the value of the ratio λ2

λ1
of the distribution parameters, offers either the

full bundle or the lighter-tail item with probability 1 and the other with probability
λ2
λ1

(see Definition A.3). This second component is essentially the Proportional (see
Definition 6.1) we designed already in Section 6.3.2. We must mention here that our
actual results in this section are now obsolete: Daskalakis et al. [25] have shown that
this auction is indeed exactly optimal. However, our analysis might be of interest to the
reader, since it is being done through the use of an explicit, closed-form dual solution
rather than an existential one like in [25] and, furthermore, the upper bound on the
optimal revenue is acquired in a straightforward way via simple weak duality rather
than complementarity. In fact, due to the nature of the problem, as we have discussed
before throughout this thesis, it might be the case that exactly tight closed-form dual
solutions cannot be found. Also, the presentation here is more “elementary”, and since
it shares many points with the more general case of arbitrarily many exponential goods
of Section 6.2, it can provide some deeper intuition and illuminate better some tech-
nical points. Finally, an interesting feature of our analysis in this section is that the
components z1, z2 of one of the dual solutions we will use are asymmetric, meaning
that z1(x, y) 6= z2(y, x). This comes in contrast with the approach in the main part
of the thesis (see e.g. Sections 5.6 and 6.2), where for simplicity and generality, since
our analysis had to be carried out for complicated settings of many items, symmetry
was essential. This point further demonstrates the richness and the complexity of the
problem of maximizing revenue in multidimensional settings: there might be many

145



different dual solutions giving rise to the same value, both symmetric or asymmetric.

A.4.1 Full Bundling

Recall from (3.4) that the expected revenue in our case is

λ1λ2

∫ ∞
0

∫ ∞
0

u(x, y) (λ1x+ λ2y − 3) e−(λ1x+λ2y) dx dy

and using the change of variables x = tz and y = (1 − t)z with z ∈ R+ and t ∈ [0, 1],
having a Jacobian of z, this becomes

λ1λ2

∫ ∞
0

z
∫ 1

0
u (tz, (1− t)z) [λ1tz + λ2(1− t)z − 3] e−z(λ1t+λ2(1−t)) dt dz.

By restricting our attention to functions u that are constant at every line of the
form x+ y = z, and defining U(z) = u (tz, (1− t)z), which is constant for all t ∈ [0, 1],
this becomes

λ1λ2

∫ ∞
0

U(z)z
∫ 1

0
[λ1tz + λ2(1− t)z − 3] e−z(λ1t+λ2(1−t)) dt dz

which is equal to

λ1λ2

λ1 − λ2

∫ ∞
0

U(z)
[
e−λ1z(2− λ1z)− e−λ2z(2− λ2z)

]
dz

and again integrating by parts, finally the expected revenue is

λ1λ2

λ1 − λ2

∫ ∞
0

U ′(z)
[
e−λ2z

(
z − 1

λ2

)
− e−λ1z

(
z − 1

λ1

)]
dz.

Selecting the full-bundling mechanism (from now one let’s call it Bundle) with u(x, y) =
x + y − ζ for x + y ≥ ζ and u(x, y) = 0 otherwise, where ζ = ζ(λ1, λ2) is the unique
(remember that λ1 6= λ2) root of the (strictly increasing) function

e−λ2z
(
z − 1

λ2

)
− e−λ1z

(
z − 1

λ1

)

for z ∈ R+, i.e. having U ′(z) = 1 for z ≥ ζ and U ′(z) = 0 otherwise, we get an expected
revenue of

λ1λ2

λ1 − λ2

∫ ∞
ζ(λ1,λ2)

e−λ2z
(
z − 1

λ2

)
− e−λ1z

(
z − 1

λ1

)
dz = ζ

λ1e
−λ2ζ − λ2e

−λ1ζ

λ1 − λ2
. (A.25)

You can see a graphical representation of the allocation space and the prices of Bundle
in Figure A.4.

Since we are planning to use our duality-theory framework, and in particular weak
duality (see Theorem 6.3), we want to find absolutely continuous functions z1, z2 :
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x

y

0 ζ

ζ

(0, 0), p = 0

(1, 1), p = ζ

x+ y = ζ

Figure A.4: Allocation function and payments of mechanism Bundle

R2
+ −→ R+ satisfying the following properties:

∂z1(x, y)
∂x

+ ∂z2(x, y)
∂y

≤ λ1λ2 [3− (λ1x+ λ2y)] e−(λ1x+λ2y) (A.26)

and
z1(0, y) = z2(x, 0) = 0 (A.27)

for all x, y ∈ R+, which give a dual value that can approximate well the expected
revenue in (A.25).

We select our dual variables z1, z2 in the following way:

z1(x, y) =

λ2
λ1x

λ1x+λ2y

[
λ1x+ λ2y − 1− 1

λ1x+λ2y

]
e−(λ1x+λ2y), λ1x+ λ2y ≥ φ,

0, λ1x+ λ2y < φ,

z2(x, y) =

λ1
λ2y

λ1x+λ2y

[
λ1x+ λ2y − 1− 1

λ1x+λ2y

]
e−(λ1x+λ2y), λ1x+ λ2y ≥ φ,

0, λ1x+ λ2y < φ,

where φ here is the golden ratio, φ = 1+
√

5
2 ≈ 1.618. Then, it is trivial to check that

condition (A.27) is satisfied and also it is easy to see that z1 and z2 are nonnegative
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functions. For condition (A.26) first compute:

∂z1(x, y)
∂x

=

{
−λ1λ2e−xλ1−yλ2 −xλ1−x2λ2

1−2x3λ3
1+x4λ4

1+yλ2−5x2yλ2
1λ2+3x3yλ3

1λ2+y2λ2
2−4xy2λ1λ

2
2+3x2y2λ2

1λ
2
2−y

3λ3
2+xy3λ1λ

3
2

(xλ1+yλ2)3 , λ1x+ λ2y > φ,

0, λ1x+ λ2y < φ,

∂z2(x, y)
∂y

=

{
−λ1λ2e−xλ1−yλ2 xλ1+x2λ2

1−x
3λ3

1−yλ2−4x2yλ2
1λ2+x3yλ3

1λ2−y2λ2
2−5xy2λ1λ

2
2+3x2y2λ2

1λ
2
2−2y3λ3

2+3xy3λ1λ
3
2+y4λ4

2
(xλ1+yλ2)3 , λ1x+ λ2y > φ,

0, λ1x+ λ2y < φ,

and by summing up we satisfy condition (A.26) for all (x, y) ∈ R2
+, with equality in

the subspace of xλ1 + yλ2 ≥ φ. The value of this feasible dual solution is∫ ∞
0

∫ ∞
0

(z1(x, y) + z2(x, y)) dx dy = λ1λ2

∫
x,y≥0

λ1x+λ2y≥φ

(x+ y)e−(λ1x+λ2y)
[
1− 1

λ1x+ λ2y
− 1

(λ1x+ λ2y)2

]
dx dy

=
∫ ∞
φ

(
z − 1− 1

z

)
e−z

∫ 1

0
t
z

λ1
+ (1− t) z

λ2
dt dz

=
∫ ∞
φ

(
z − 1− 1

z

)
e−z

1
2

(
z

λ1
+ z

λ2

)
dz

= λ1 + λ2
2λ1λ2

∫ ∞
φ

(
z2 − z − 1

)
e−z dz (A.28)

where for the third equality we used the change of variables x = t z
λ1

and y = (1− t) z
λ2

with z ∈ R+ and t ∈ [0, 1], having Jacobian equal to z
λ1λ2

.

A.4.2 The Randomized Mechanism

In this section we present the almost optimal randomized mechanism for our case of
two exponential goods. This mechanism is combination of the deterministic Bundle
of the previous Appendix A.4.1 and a very simple randomized auction which has a
menu-size [39] of just three: a full-bundling deterministic region (similar to Bundle),
a single non-deterministic region with allocation probabilities 1 and λ2

λ1
for the two items

(similar to Proportional) and, of course, a “zero” region. Formally, our mechanism
3-Random is the following:

Definition A.3 (3-Random mechanism). Mechanism 3-Random allocates the items
with probabilities

• (0, 0) if λ1x+ λ2y < 2 and x+ y < b,

•
(
1, λ2

λ1

)
for a price of 2

λ1
if λ1x+ λ2y ≥ 2 and y ≤ c, and

• (1, 1) for a price of b if x+ y ≥ b and y > c,

respectively, where b =
1−W

(
− λ2
eλ1

)
λ2

and c = λ1b−2
λ1−λ2

. Here W is the Lambert function
(see also Footnote 4).
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x

y

0 2
λ1

b

c

b

2
λ2

(0, 0) (1, λ2
λ1

), p = 2
λ1

(1, 1), p = b

x+ y = b

λ1x+ λ2y = 2

Figure A.5: The allocation function and payments of mechanism 3-Random, for two exponential

goods. Here b =
1−W

(
− λ2
eλ1

)
λ2

and c = λ1b−2
λ1−λ2

.

First of all, notice that 3-Random is a truthful mechanism, since it is produced by
the convex utility function

u(x, y) = max
{

0, x+ λ2

λ1
y − 2

λ1
, x+ y − b

}
,

and also it is well defined for λ2
λ1
≤ `1, where `1 ≈ 0.678 is the (unique) root of the

equation
W (−e−1x) = 1− 2x

for x ∈ (0, 1), since c < b < 2
λ2

for all λ1 > λ2 > 0 but also c ≥ 0 for λ2
λ1
≤ `1. A

graphical representation of the allocation space of the mechanism and its prices is given
in Figure A.5.

Now, we are ready to give our complete selling randomized mechanism for two
non-i.i.d. exponential goods:

Definition A.4 (Mixed auction).

• If λ1
λ2
∈ (0, `1] then run mechanism 3-Random, and

• If λ1
λ2
∈ (`1, 1) then run mechanism Bundle,
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where `1 ≈ 0.678 is defined above.

The expected revenue of Bundle was analyzed in Appendix A.4.1 and is given by
expression (A.25). Let’s now focus on analyzing 3-Random. By Definition A.3 we
have that the expected revenue is:
∫ c

0

∫ ∞
2−λ2y
λ1

2
λ1
·λ1λ2e

−λ1x−λ2y dx dy+
∫ b

c

∫ ∞
b−y

b·λ1λ2e
−λ1x−λ2y dx dy+

∫ ∞
b

∫ ∞
0

b·λ1λ2e
−λ1x−λ2y dx dy

which equals
2cλ2

e2λ1
+
bλ2

(
e−bλ2 − e−bλ1+cλ1−cλ2

)
λ1 − λ2

+ be−bλ2

and by using the facts that c = λ1b−2
λ1−λ2

and b =
1−W

(
− λ2
eλ1

)
λ2

, we get that the expected
revenue of 3-Random is given by

λ2e
−2

λ1(λ1 − λ2)

[
λ1λ2b

2

λ2b− 1 − 4
]
. (A.29)

We will now utilize weak duality to show Mixed mechanism has almost opti-
mal revenue. We need to find absolutely continuous functions z1, z2 : R2

+ −→ R+

satisfying the properties (A.26) and (A.27) for all x, y ∈ R+. Then, the quantity∫∞
0
∫∞

0 (z1(x, y) + z2(x, y)) dx dy will bound Mixed’s (and in fact every mechanism’s
for our problem) revenue from above.

The construction of the dual variables presented below is for λ2
λ1
≤ `2 ≡ 1 +

1
2W (−2e−2) ≈ 0.797. Otherwise, we define the duals as presented in Appendix A.4.1.
First let

z1(x, y) =



λ1λ2
(
x+ λ2

λ1
y − 2

λ1

)
e−λ1x−λ2y, λ1x+ λ2y ≥ 2 ∧ 0 ≤ y ≤ c̃,

λ1λ2
(
x+ y − b̃

)
e−λ1x−λ2y, x+ y ≥ b̃ ∧ c̃ < y ≤ b̃,

λ1λ2xe
−λ1x−λ2y, x ≥ 0 ∧ y > b̃,

0, otherwise,

for all x, y ∈ R+, where we pick parameters b̃ and c̃ to be

b̃ =
2λ2 + (λ1 − λ2) log

(
1− λ2

λ1

)
λ2

2
= 1
λ2

(2− λ log λ) (A.30)

c̃ = λ1b̃− 2
λ1 − λ2

=
2λ2 + λ1 log

(
1− λ2

λ1

)
λ2

2
= 1
λ2

(
2 + log λ

1− λ

)
, (A.31)
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x

y

0 b̃− c̃ 2
λ1

b̃

c̃

b̃

2
λ2

0 f1 · f

f2 · f

f3 · f

y = b̃− x

λ1x+ λ2y = 2

Figure A.6: The critical regions of the feasible dual solution z1

where λ = 1− λ1
λ2
∈ (0, 1). We can write this more compactly as

z1(x, y) =



h1(x, y)h(x, y), h1(x, y) ≥ 0 ∧ 0 ≤ y ≤ c̃,

h2(x, y)h(x, y), h2(x, y) ≥ 0 ∧ c̃ < y ≤ b̃,

h3(x, y)h(x, y), h3(x, y) ≥ 0 ∧ y > b̃,

0, otherwise,

where h(x, y) = λ1λ2e
−λ1x−λ2y, h1(x, y) = x + λ2

λ1
y − 2

λ1
, h2(x, y) = x + y − b and

h3(x, y) = x. Notice that z1 is a well defined, absolutely continuous, nonnegative
function in R2

+ since c̃ < b̃ < 2
λ2

for all λ1 > λ2 > 0 but also c̃ ≥ 0 for λ2
λ1
≤ `2. In

addition, it is easy to see that h1(x, c̃) = h2(x, c̃) and h2(x, b̃) = h3(x, b̃) for all x ∈ R+.
An illustration of the critical regions of z1 and its values is given in Figure A.6.

The critical derivative of function z1 is

∂z1(x, y)
∂x

=



(3− λ1x− λ2y)h(x, y), h1(x, y) ≥ 0 ∧ 0 ≤ y ≤ c̃,

(1 + λ1b̃− λ1x− λ1y)h(x, y), h2(x, y) ≥ 0 ∧ c̃ < y ≤ b̃,

(1− λ1x)h(x, y), h3(x, y) ≥ 0 ∧ y > b̃,

0, otherwise,

(A.32)
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Now we move on to defining z2. As we discussed in the introduction of this section,
this time this is going to be non-symmetric with respect to the other dual variable z1:

z2(x, y) =



λ1e
−λ1x

[
λ1
λ2
e−λ2b̃ − λ1−λ2

λ2
e−λ2(b̃−x) + e−λ2y(λ1x+ λ2y − 2)

]
, x ≤ b̃− c̃ ∧ ψ(x) ≤ y ≤ b̃− x,

λ1e
−λ1x

[
λ1
λ2
e−λ2b̃ + e−λ2y

(
λ1b̃− λ1+λ2

λ2
− (λ1 − λ2)y

)]
, x ≤ b̃− c̃ ∧ b̃− x < y ≤ b̃,

λ1e
−λ1x

[
λ1−λ2
λ2

e
−λ2

λ1 b̃−2
λ1−λ2 + e−λ2y

(
λ1(b̃− 1)− 1− y(λ1 − λ2)

)]
, x > b̃− c̃ ∧ c̃ ≤ y ≤ b̃,

λ1(λ2y − 1)e−λ1x−λ2y, y ≥ b̃,

0, otherwise,

for all x, y ∈ R+, where

ψ(x) = 2
λ2
− λ1

λ2
x− 1

λ2W
e−λ1x−λ2b̃+2

(
λ1 − (λ1 − λ2)eλ2x

)
λ2

 (A.33)

and parameters b̃ and c̃ are as before. More compactly,

z2(x, y) =



g1(x, y)g(x, y) x ≤ b̃− c̃ ∧ ψ(x) ≤ y ≤ b̃− x,

g2(x, y)g(x, y), x ≤ b̃− c̃ ∧ b̃− x < y ≤ b̃,

g3(x, y)g(x, y), x > b̃− c̃ ∧ c̃ ≤ y ≤ b̃,

g4(x, y)g(x, y) y ≥ b̃,

0, otherwise,

where

g(x, y) = λ1e
−λ1x

g1(x, y) = λ1

λ2
e−λ2b̃ − λ1 − λ2

λ2
e−λ2(b̃−x) + e−λ2y(λ1x+ λ2y − 2)

g2(x, y) = λ1

λ2
e−λ2b̃ + e−λ2y

(
λ1b̃−

λ1 + λ2

λ2
− (λ1 − λ2)y

)

g3(x, y) = λ1 − λ2

λ2
e
−λ2

λ1 b̃−2
λ1−λ2 + e−λ2y

(
λ1(b̃− 1)− 1− y(λ1 − λ2)

)
g4(x, y) = (λ2y − 1)e−λ2y.

Notice that, z2 is also a well defined, nonnegative, absolutely continuous function in R2
+,

based on the above analysis after the definition of z1, and also because g1(x, b− x) =
g2(x, b−x) and g2(x, b̃) = g3(x, b̃) = g4(x, b̃) for all x ∈ R+. Finally, it is also critical to
point out that 0 < ψ(x) ≤ b̃− x for all x ∈ [0, b̃− c̃] with ψ(b̃− c̃) = c̃. An illustration
of the critical regions of z2 and its values is given in Figure A.7. Notice the extra region
between curves y = b̃− x and y = ψ(x) drawn with blue colour, that differentiates the
“projection” of z2 from that of z1.
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y

0 b̃− c̃ 2
λ1

b̃
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λ2

0 0

g1 ·g
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g2 ·g

h(x)

g4 · g
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λ1x+ λ2y = 2

Figure A.7: The critical regions of the feasible dual solution z2. Notice the asymmetry with respect
to the other part of the solution, namely z1 in Figure A.6.

The derivative of z2 is

∂z2(x, y)
∂y

=



λ2(3− λ1x− λ2y)e−λ2yg(x, y), x ≤ b̃− c̃ ∧ ψ(x) ≤ y ≤ b̃− x,

λ2(2− b̃λ1 + (λ1 − λ2)y)e−λ2yg(x, y), x ≤ b̃− c̃ ∧ b̃− x < y ≤ b̃,

λ2(2− b̃λ1 + (λ1 − λ2)y)e−λ2yg(x, y), x > b̃− c̃ ∧ c̃ ≤ y ≤ b̃,

λ2(2− λ2y)e−λ2yg(x, y), y ≥ b̃,

0, otherwise,

=



(3− λ1x− λ2y)h(x, y), x ≤ b̃− c̃ ∧ ψ(x) ≤ y ≤ b̃− x,

(2− b̃λ1 + (λ1 − λ2)y)h(x, y), h2(x, y) ≥ 0 ∧ c̃ ≤ y ≤ b̃,

(2− λ2y)h(x, y), y ≥ b̃,

0, otherwise.

(A.34)

From equations (A.32) and (A.34) one can see that condition (A.26) is indeed satisfied.
Now it remains to upper-bound the integral

∫
R2

+
z1 + z2.
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First, we compute

∫ ∞
0

∫ ∞
0

z1(x, y) dx dy =
∫ c̃

0

∫ ∞
2−λ2y
λ1

h1(x, y)h(x, y) dx dy +
∫ b̃

c̃

∫ ∞
b̃−y

h2(x, y)h(x, y) dx dy

+
∫ ∞
b̃

∫ ∞
0

h3(x, y)h(x, y) dx dy

= λ2c̃

λ1e2 + λ2

λ1(λ1 − λ2)
(
e−λ2b̃ − e−λ1b̃+c̃(λ1−λ2)

)
+ e−λ2b̃

λ1

= λ1e
−λ2b̃−2 + (λ1b̃− 3)λ2

λ1(λ1 − λ2)e2 , using (A.31).

Next,

∫ b̃−c̃

0

∫ b̃−x

ψ(x)
g1(x, y)g(x, y) dy dx = λ1

λ2

∫ b̃−c̃

0

(
(λ1 − λ2)ψ(x) + 1− λ1b̃

)
e−λ2b̃−(λ1−λ2)x − λ1(h(x) + x− b)e−λ2b̃−λ1x

+ (λ2ψ(x) + λ1x− 1)e−λ2ψ(x)−λ1x dx

≡ i1(λ1, λ2)∫ b̃−c̃

0

∫ b̃

b̃−x
g2(x, y)g(x, y) dy dx = 1

λ2
2(λ1 − λ2)

[
λ1(2λ1 − λ2)e−2

+ λ2(λ2 − 1)e−λ2b̃ +
(
λ2

2(2λ1b̃+ 1− b̃)− λ1(2λ1 + λ2)
)
e
−2λ1+b̃λ2

2
λ1−λ2

]

= 2λ2
2b̃− λ1(b̃+ 2λ2b̃− 2) + λ2(b̃− 1)

λ1(λ1 − λ2) e−2 + λ2 − 1
λ2(λ1 − λ2)e

−λ2b̃ by (A.30)∫ b̃

c̃

∫ ∞
b̃−c̃

g3(x, y)g(x, y) dx dy = e−2

λ2
2

[
(2λ1 − λ2

2b̃)e
−λ2(2−λ2 b̃)

λ1−λ2 − 2λ1 + 4λ2 − λ2
2b̃

]
= 2λ1 − 2λ1λ2b̃+ λ2

2b̃

λ1λ2
e−2 by (A.30)∫ ∞

b̃

∫ ∞
0

g4(x, y)g(x, y) dx dy = b̃e−λ2b̃.

Combining all these we finally get that:
∫ ∞

0

∫ ∞
0

z1(x, y) + z2(x, y) dx dy = i1(λ1, λ2) + i2(λ1, λ2), (A.35)

where

i2(λ1, λ2) = λ2b̃ ((λ2 − 1)(λ1 − λ2) + λ2
1) + 2λ2

1 − λ2(3λ1 + λ2)
λ1λ2(λ1 − λ2) e−2+

(
b+ λ1 + λ2 − 1

λ2(λ1 − λ2)

)
e−λ2b̃.

Summarizing, from equations (A.25) and (A.29) we have that the expected revenue
of the Mixed mechanism is

RMixed(λ1, λ2) =


λ2e−2

λ1(λ1−λ2)

(
λ1λ2b2

λ2b−1 − 4
)
, 0 < λ2

λ1
≤ `1,

ζ λ1e−λ2ζ−λ2e−λ1ζ

λ1−λ2
, `1 <

λ2
λ1
< 1,

(A.36)

where `1 ≈ 0.678101 is the (unique) root of the equation W (−e−1x) = 1− 2x in (0, 1),
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b =
1−W

(
− λ2
eλ1

)
λ2

and ζ is the (unique) root of function e−λ2z
(
z − 1

λ2

)
− e−λ1z

(
z − 1

λ1

)
in R+. On the other hand, by combining our dual constructions of Appendices A.4.1
and A.4.2 we get that the optimal revenue is upper bounded by

ROPT(λ1, λ2) ≤

min
(
i1(λ1, λ2) + i2(λ1, λ2), λ1+λ2

2λ1λ2

∫∞
φ

(
z2 − z − 1

)
e−z dz

)
, 0 < λ2

λ1
≤ `2,

λ1+λ2
2λ1λ2

∫∞
φ

(
z2 − z − 1

)
e−z dz, `2 <

λ2
λ1
< 1,

(A.37)

by equations (A.35) and (A.28). The following theorem establishes that the ratio
RDual(λ1,λ2)
RMixed(λ1,λ2) depends only on the value of the ratio λ2

λ2
and not at the independent

values of λ1 and λ2:

Theorem A.4. Let λ1, λ2, λ
′
1, λ
′
2 ∈ R+. Then

λ′2
λ′1

= λ2

λ1
=⇒ RDual(λ′1, λ′2)

RMixed(λ′1, λ′2) = RDual(λ1, λ2)
RMixed(λ1, λ2) .

Proof. See the following ?? A.4.2.1.

So, we define this ratio

ρ

(
λ2

λ1

)
= RDual(λ1, λ2)
RMixed(λ1, λ2)

and of course, from our duality framework, it is obvious that this is an upper bound
on the approximation ratio of the revenue of mechanism Mixed. You can see a plot
of ρ(λ) for all possible values of λ ∈ (0, 1) in Figure A.8. Thus, the following result is
immediate:

Theorem A.5. The Mixed mechanism for the single-player two-items model with
non-identical exponentially distributed valuation priors is ρ-approximate, with ρ <

1.0033.

A.4.2.1 The approximation ratio depends only on the ratio λ2
λ1

Lemma A.1. Let λ1, λ2, λ
′
1, λ
′
2, c ∈ R>0 such that λ′1 = cλ1 and λ′2 = cλ2. Then,

RMixed(λ′1, λ′2) = 1
c
RMixed(λ1, λ2).

Proof. First, from the way we defined b in Definition A.3, it is straightforward to see
that b′ = b

c
. Also, for every real variable z ∈ R+

e−λ2z
(
z − 1

λ2

)
− e−λ1z

(
z − 1

λ1

)
= 0⇐⇒ e−cλ2

z
c

(
z

c
− 1
cλ2

)
− e−cλ1

z
c

(
z

c
− 1
cλ1

)
= 0

⇐⇒ e−λ
′
2
z
c

(
z

c
− 1
λ′2

)
− e−λ′1

z
c

(
z

c
− 1
λ′1

)
= 0,
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λ

ρ(λ)

0 `1 `2 1
1

1.0030

1.0033

Figure A.8: Plot of ρ(λ) with respect to the ratio λ

so in the way we defined ζ in Appendix A.4.1 it is again now easy to see that ζ ′ = ζ
c
.

By the definition of Mixed mechanism we have two cases from (A.36) to study in
order to establish the lemma:

• Case 1: 0 < λ1
λ2

= λ′1
λ′2
< `1. Then

RMixed(λ′1, λ′2) = λ′2e
−2

λ′1(λ′1 − λ′2)

(
λ′1λ

′
2b
′2

λ′2b
′ − 1 − 4

)
= cλ2e

−2

cλ1(cλ1 − cλ2)

cλ1cλ2
b2

c2

cλ2
b
c
− 1
− 4

 = 1
c
RMixed(λ1, λ2).

• Case 2: `1 <
λ1
λ2

= λ′1
λ′2
< 1. Then

RMixed(λ′1, λ′2) = ζ ′
λ′1e

−λ′2ζ
′ − λ′2e−λ

′
1ζ
′

λ′1 − λ′2
= ζ

c

cλ1e
−cλ2

ζ
c − cλ2e

−cλ1
ζ
c

cλ1 − cλ2
= 1
c
RMixed(λ1, λ2).

Lemma A.2. Let λ1, λ2, λ
′
1, λ
′
2, c ∈ R>0 such that λ′1 = cλ1 and λ′2 = cλ2. Then,

ROPT(λ′1, λ′2) = 1
c
ROPT(λ1, λ2).
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Proof. From the way we defined b̃ in (A.30), it is easy to see that b̃′ = b̃
c
. Then, it also

not difficult to see from (A.33) that

ψ′
(
x

c

)
= 1
c
ψ(x).

Now, taking the above into consideration it is a matter of elementary calculations to
look at the definitions in page 154 and check that

i1(λ′1, λ′2) + i2(λ′1, λ′2) = 1
c

(i1(λ1, λ2) + i2(λ1, λ2)) ,

and it is also trivial to see that

λ′1 + λ′2
2λ′1λ′2

∫ ∞
φ

(
z2 − z − 1

)
e−z dz = 1

c

λ1 + λ2

2λ1λ2

∫ ∞
φ

(
z2 − z − 1

)
e−z dz.

So from equation (A.37) we get the desired

ROPT(λ′1, λ′2) = 1
c
ROPT(λ1, λ2).
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