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Abstract

In emerging pervasive scenarios, data is collected by sensing devices in streams that occur at several, distributed points
of observation. The size of data typically far exceeds the storage and computational capabilities of the tiny devices
that have to collect and process them. A general and challenging task is to allow (some of) the nodes of a pervasive
network to collectively perform monitoring of a neighbourhood of interest by issuing continuous aggregate queries on
the streams observed in its vicinity. This class of algorithms is fully decentralized and diffusive in nature: collecting all
data at few central nodes of the network is unfeasible in networks of low capability devices or in the presence of massive
data sets. Two main problems arise in this scenario: i) the intrinsic complexity of maintaining statistics over a data
stream whose size greatly exceeds the capabilities of the device that performs the computation; ii) composing the partial
outcomes computed at different points of observation into an accurate, global statistic over a neighbourhood of interest,
which entails coping with several problems, last but not least the receipt of duplicate information along multiple paths
of diffusion.

Streaming techniques have emerged as powerful tools to achieve the general goals described above, in the first place
because they assume a computational model in which computational and storage resources are assumed to be far exceeded
by the amount of data on which computation occurs. In this contribution, we review the main streaming techniques and
provide a classification of the computational problems and the applications they effectively address, with an emphasis
on decentralized scenarios, which are of particular interest in pervasive networks.
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1. Introduction

Technological advancements and socioeconomic forces
have transformed the way in which we live, work and
communicate with each other. In this new era, perhaps
the most critical variable upon which all our develope-
ment is based, is that of efficiently managing the huge
amount of information constantly being generated in var-
ious, diverse forms and locations. The predominant com-
putational model in modern environments is distributed in
nature: many remote devices, possibly different in hard-
ware specifications, are continuously observing and gen-
erating huge amounts of data that far exceed their stor-
ing, processing and energy capabilities and are organized
in dynamically evolving, pervasive network infrastructures
that, as well, have limited bandwidth and serving capabil-
ities with respect to the amount and the dissemination of
the tasks we are asking them to perform.

In this survey we deal with the algorithmic issues un-
derlying such settings, giving special emphasis on the as-
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sumption that our fundamental processing units are tiny
artifacts, small and usually inexpensive devices with very
limited storage, computational power, energy independence
and, of course, reliability. In particular, we are interested
in being able to efficiently extract crucial statistical infor-
mation regarding our entire network, in the form of aggre-
gate queries. We review important results from the areas
of data streaming and database management, in section 2
describing the fundamental algorithmic techniques of tra-
ditional, centralized data streaming. Then, using these as
building blocks, we cover distributed computational mod-
els in section 3.

In no way we consider this survey to be exhaustive.
The area of data streaming is very wide and constantly
evolving and we refer to other treatments [1–6] and excel-
lent tutorials [7, 8] for further consideration.

1.1. Motivation
Our main motivating applications in this survey arise

in the field of sensor networks [9]. The authors in [10–12]
report the deployment of such networks in a wide range
of scientific, security, industrial and business applications.
Examples include climatological and environmental moni-
toring, traffic monitoring, smart homes, fire detection, seis-
mic measurements, structural integrity, animal control and
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habitat monitoring. Apart from sensor networks, other
motivating applications include IP routing and network
traffic monitoring and analysis, managing large databases,
secure and real-time financial transactions and of course,
the Web itself [1, 2, 13, 3].

1.2. Aggregation

In the scenarios outlined above, single individual val-
ues are usually not of great relevance. In fact, users are
more interested in the quick extraction of succinct and
useful synopses about a large portion of the underlying
observation set. Consider, for example, the case of a tem-
perature sensor network. We would like to be able to con-
tinuously monitor entire infrastructure and efficiently an-
swer queries such as “What was the average temperature
over the entire terrain during the last 12 hours?”, or “Are
there any specific clusters that have reached dangerously
high temperatures?”.

As already mentioned and further discussed in follow-
ing section 1.4, trying to collect all data monitored by
the sensors would be unrealistic in terms of bandwidth,
power consumption and communication intensity. So, the
canonical approach is to compute statistical aggregates,
such as max, min, average, quantiles, heavy hitters, etc.,
that can compactly summarise the distribution of the un-
derlying data. Furthermore, since this information is to
be extracted and combined across multiple locations and
devices, repeatedly and in a dynamic way, in-network ag-
gregation schemes [14] must be developed that efficiently
merge and quickly update partial information to include
new observations. Also notice that, computing aggregates
instead of reporting exact observations, can leverage the ef-
fect of packet losses and, generally, network failures, which
are common phenomena in wireless networks of tiny arti-
facts. We deal with such issues explicitly in section 3.3.

1.3. Traditional vs sensor network streaming

It is evident that there are two levels of computation
and aggregation in distributed settings. At a low level,
each sensor observes a stream of data and needs to effi-
ciently extract and maintain information about it. This is
essentially the problem of traditional, centralized stream-
ing which has been extensively studied during the last two
decades [15–17]. Aggregation is considered with respect to
the individual values comprising the data stream, into a
concise summary. This is the subject matter of section 2.

At a higher level, all remote sites should coordinate
to combine these partial information computed from each
device. Here, aggregation is considered with respect to
this merging process of creating summaries that describe
the entire infrastructure. Obviously, new challenges are
imposed in such distributed settings, which we address in
section 3. It should be clear that this in-network aggre-
gation model generalizes traditional streaming, in the way
that a single data stream can be seen as values distributed
along a linear-chain topology [18, section 1.3]. Efficient

algorithms for distributed computation, that do not make
stringent assumptions about the infrastructure topology,
can be readily used for classical streaming problems.

1.4. Physical restrictions and algorithmic challenges

In the setting of massive data stream computation ad-
dressed in this survey, data are observed or produced at a
far higher rate than can be locally stored or, sometimes,
even observed. Their delivery to aggregation or elabo-
ration points requires an amount of in-network commu-
nication that far exceeds the power capabilities of sens-
ing devices. Furthermore, the computational complexity
of exactly evaluating the statistical aggregates of interest
is unrealistic [6]. Considering further that we are inter-
ested in scenarios where these functions are performed by
tiny devices with extremely limited resources, it is natural
to ask for algorithmic solutions and data structures that
require storage and update times that are sublinear and
often (poly)logarithmic with respect to the size of the ob-
served data, further imposing similar constraints on the
amount of communication involving each device. We ad-
dress these issues in more detail to sections 2.3 and 3.1.

2. Traditional Data Streams

2.1. Streaming models

In the remainder of this section, we refer to streaming
models that best reflect the scenarios arising in networks of
tiny artifacts. In particular, we refer to the taxonomy pre-
sented in [1]. The input is a stream a1, a2, . . . of items that
arrive sequentially, one after the other, and that describe
an underlying signal A, which in turn can be regarded
as a one-dimensional function A : [1 · · ·N ] → <. Each
item causes an update of A’s state. We denote by At the
state of the signal after seeing the t-th item in the stream.
Models differ on how the ai’s describe A.
Time Series Model. In this model, each ai equals A[i] and
the ai’s are presented in increasing order of i. This is a
suitable model for data that are released in time series.
For example, this is the case when we receive periodic up-
dates about the temperature at a particular site, or we
receive periodic updates about the amount of traffic ob-
served at a network link. This is sometimes called “Insert
Only Model” [19, Chapter 3].
Cash Register Model. In this case, the at’s are increments
to A[j]’s. Following the notation of [1], we have at =
(j, It), Ii ≥ 0, meaning that the t-th item causes the follow-
ing update to the underlying signal: At[j] = At−1[j] + It,
Note that in this case, multiple ai’s could increment a
given A[j] over time. This model reflects many scenarios
of practical interest, such as keeping track of the traffic vol-
umes directed towards different IP destination addresses as
packets traverse a router. It is a special case of the more
general Turnstile model [1], in which updates can be neg-
ative (also called “Accumulative Model” in [19, Chap. 3]).
We do not consider the more general Turnstile model in
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this survey, since it is of lesser interest for the applications
in networks of tiny artifacts we consider.
Further modelling issues. Some scenarios of interest pose
constraints that are not taken into account by the models
we have introduced (and not even by the Turnstile model).
For example, assume that, considered the generic item
at = (i, It), i uniquely describes an event (e.g., specify-
ing geographical coordinates and a time-stamp). Assume
further that the same item at may be reported several
times (e.g., because events are delivered to a computing
sink node from different sensor nodes connected in a net-
work in which multiple data paths from nodes to sink are
present) but A has to be updated only once per event.

Another issue occurs when we want to compute an ag-
gregate over multiple data streams. Think, for example,
of computing the average temperature over the streams of
readings performed by a number of sensor nodes covering
an area. One natural intuition is that this is equivalent
to performing the computation over a suitably defined ag-
gregate stream. The problem is that the correct way to
derive the aggregate stream is problem dependent. In par-
ticular, the arrival order of the items observed at different
streams might affect the value of the aggregate we want
to estimate. In the remainder of this survey we restrict
to cases of interest in practice, in which arrival order is
irrelevant, i.e., the aggregate is order-insensitive. In this
case, considered any time t, At only depends on the items
that were observed until time t and not on the order of
observation.

Windowed streaming. It is natural to imagine that the re-
cent past in a data stream is more significant than distant
past. A typical case is the following: A sensor continu-
ously monitors a temperature, maintaining its maximum
over the past hour. It should be clear that with limited
memory, it is not possible for the sensor to know at every
time step the maximum temperature observed in the past
hour. There are currently two main approaches to model
this aspect. The first is combinatorial and assumes a slid-
ing window of size W , so that at time t, the aggregate we
are interested in should be computed only over the last W
updates, i.e, at−W+1, . . . , at. The impact of items outside
the current window should be discounted as the window
slides over time. The difficulty of course is that we cannot
store the entire window, but only o(W ), or typically only
o(polylog(W )) bits are allowed. This pretty natural model
was proposed in [20]. Its main drawback is that the correct
window size should actually depend on the current rate of
observation and thus vary over time. One way to address
this issue is based on the use of an Exponential Weighted
Moving Average to describe the falling importance of items
as they age.

2.2. Statistical aggregates

We first consider the case in which we have a stream
of data and a single point of observation. With respect to
this case, we define a number of statistics of interest for a

network of tiny artifacts. We emphasize that the collection
we propose is far from exhaustive. The interested reader
can refer to [1, 19] for more comprehensive overviews.

Statistics of interest in networks of tiny artifacts. The ref-
erence scenario of this subsection is the one in which we
want to issue continuous queries over the values of a stream
observed at a single point of observation, e.g., a sensor
node. we will restrict to queries that are realistic and of
interest in networks of artifacts with limited computing,
communication and storage capacities. In particular, we
shall consider sum, mean, frequency moments [16, 15, 21],
quantiles, frequent items, heavy hitters and histograms
[22, 1]. These aggregates are defined below.
Sum, mean and max. These queries are of interest both
in the time series and the cash register models. In the
basic case of a single stream, the sum can be obviously
maintained in O(1) space with O(1) cost per update both
in the time series and cash register models using a sin-
gle counter. Maintaining mean is also straightforward in
the time series model: at time t the value of the mean is
exactly

∑t
i=1 A[i]/t =

∑t
i=1 Ii/t. Maintaining the mean

in the cash register model in polylogarithmic space poses
some challenge. In this case, the (exact) value of the mean
is given by

∑
iA[i]/|{j : A[j] 6= 0}|. This requires main-

taining, at any time t the number of non-zero components
in A at time t. While this is straightforward with Ω(N)
space, it is far less obvious if we are constrained to sublin-
ear space. This problem is considered in Subsection 2.4.
Frequency moments. For k ≥ 0, the k-th frequency mo-
ment is defined as Fk =

∑
iA[i]k. The values of k of

interest in applications are k = 0, 1, 2. For k = 0 we are
tracking the number of distinct items observed so far. For
k = 1 we are keeping track of the sum of updates. F2 is
important as a measure of variance in data streams and it
can be interpreted as the Self-Join size.
Quantiles. The response to the (φ, ε)-quantiles query is
the set {jk} of indices, with k = 0, . . . , 1/φ,1 such that
(kφ− ε)‖A‖1 ≤

∑
i≤jk A[i] ≤ (kφ+ ε)‖A‖1 for every k.

Top-k items and heavy hitters. Problems of interest in
monitoring applications include the following: i) main-
tain the top-k (i.e., the k largest items) of A; ii) main-
tain the φ-heavy hitters, i.e., the set I of indices, such
that A[i] ≥ φ‖A‖1, for every i ∈ I. In the time series
model, the former problem can be easily solved using k
counters, whereas the latter can be solved using O(1/φ)
counters, after observing that there cannot be more than
1/φ heavy hitters. In the cash register model, information
theoretic arguments show that even the problem of main-
taining maxiA[i] requires Ω(N) space [15] and the same
holds for the φ-heavy hitter problem [1, Subsection 5.1.2,
Thm. 9]. In the remainder, we consider the (φ, ε)-heavy
hitter problem, defined as follows: Return all i’s such that

1For the sake of simplicity, we assume that 1/φ is an integer. If
this is not the case, the last value of k is b1/φc.
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A[i] ≥ φ‖A‖1 and no i such that A[i] ≤ (φ − ε)‖A‖1, for
some specified ε < φ.

Histograms. A histogram [23] is a partition of [0, N) into
intervals [b0, b1)∪· · · [bB−1, bB), where b0 = 0 and bB = N ,
called buckets, together with a collection {hj}B−1j=0 of B
heights, one for each interval. For every S ⊆ {0, N},
denote by χS the N -dimensional index vector that is 1
on components corresponding to elements in S. The his-
togram is an approximation to A given by R =

∑B−1
j=0 hjχ[bj ,bj+1).

This means that the value of each component A[i] is ap-
proximated by hj , where j is the index of the unique bucket
containing i. The problem is choosing B − 1 (boundary,
height) pairs (bj , hj), such that ‖A − R‖2 is minimized.
Let Ropt the optimal choice for R. The problem cannot
be solved exactly in a streaming model [1, 23], hence the
(B, ε)-histogram problem is naturally defined as finding a
vector R as defined above, such that with probability at
least 1− δ, ‖A−R‖2 ≤ (1 + ε)‖A−Ropt‖2.

Estimating statistics in a connected world. Some emerg-
ing application, such as sensor network based monitoring
and network-wide IP traffic analysis present many tech-
nical challenges. They need distributed monitoring and
continuous tracking of events. In these new scenarios, the
focus is more on aggregate queries, computed over read-
ings collected at different points rather than at a single
point of observation. This is for example the case in large
wireless sensor networks where, as observed in [24], aggre-
gation queries often have greater importance than individ-
ual sensor readings. A similar scenario is likely to emerge
in networks of tiny artifacts, where we are likely to per-
form continuous monitoring functions and their individual
readings have to be aggregated and/or collected at one or
more points of elaboration and analysis.

This general scenario can be abstracted assuming the
presence of k streams S1, . . . ,Sk at multiple points of ob-
servation, whose readings collectively affect a common un-
derlying signal A, as defined in Subsection 2.1. The i-th
item ai(h) observed in the h-th stream is thus a pair (j, I)
that causes the update A[j] by I. If we consider order-
insensitive statistics, we can naturally view each Sh as a
set and define the union stream S as S = ∪kh=1Sh. Given
this general framework, many issues arise, depending on
the communication model in the underlying network.

In particular, the underlying communication infrastruc-
ture affects the way in which queries are diffused in the
network and results are aggregated. Two general com-
munication paradigms have to be considered, since they
significantly affect the nature of the problems we want
to solve. The first assumes the presence of a routing in-
frastructure, so that queries and data packets are routed
towards their destinations along single paths. This is for
example the case in an IP network or a in a sensor net-
work in which readings are delivered to the sink along the
paths of a tree rooted at the sink itself [25]. The second

communication paradigm is flooding-based and is for ex-
ample of interest in networks of tiny artifacts connected
over a wireless network. Here, the presence of multiple
data paths from a source to a destination can cause the
presence of duplicates, i.e., the same item or piece of data
might be received multiple times. This, in turn, can affect
accuracy, depending on the characteristics of the aggregate
of interest and the technique used to estimate it.

Queries. In this survey we restrict to order-insensitive
queries, i.e., aggregates whose result does not depend on
the order in which items are observed. Such queries form
the vast majority in practice. Queries can be further be
one-shot or continuous [26]. In the former case, we want
to retrieve answers to the query on demand. In the latter
case, we want to track the value of an aggregate contin-
uously, as the stream evolves. This is for example the
case when we want to implement a distributed system of
triggers to detect the presence of anomalies. Another dis-
tinction is between algebraic and holistic queries [27]: for
the former, the aggregate can be expressed by an alge-
braic function of a suitable number of arguments (e.g.,
max or sum), whereas this does not hold for holistic queries
(e.g., top-k or quantiles). A further distinction is between
duplicate-sensitive and duplicate-resilient queries [28]: the
former compute aggregates whose value may depend on
the presence of duplicates, whereas this does not hold for
the latter. For example, assume k sensor nodes report
events to a sink. Assume each event is a pair (i, a), with
i an identifier of the event (e.g., geographical coordinates
and time-stamp) and a a value associated to the event
(e.g., a temperature value). It is clear that, in estimat-
ing the aggregate, the contribution of each item should
be considered only once. What happens if the same item
can be reported multiple times to the sink (e.g., due to
the presence of multiple data paths)? This depends on
the aggregate we wish to compute. Thus, if we want to
compute the maximum value ever observed then it is ir-
relevant whether or not the same event is reported twice
or more times (possibly aggregated with other data), since
max is duplicate-resilient. Conversely, multiple reports of
the same event might negatively affect the accuracy for
duplicate-sensitive aggregates, such as sum or mean.

2.3. Measuring performance

In general terms, the performance of a streaming al-
gorithm is measured along two main axes: i) the amount
of resources needed to perform the computation; ii) the
accuracy in the estimation of the statistics of interest.

Space and time resources. This aspect has been described
in general terms in Section 1.4. Here we make this notion
more precise. There are different performance measures:
i) Processing time per item at in the stream; ii) Space used
to store the data structure summarizing the state of At at
time t (storage); iii) Time needed to compute functions on
A (query time).
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Typically, the objective is having a data structure of
size o(max{N, t}) at any time t, specificallyO(polylog(N, t)).
We would also like to obey similar constraints for the up-
date and query times [29]. Two comments are in order.
First, in general we want to have no dependence from t
for obvious reasons. Second, it should be noted that N
describes the size of the universe, i.e., the maximum pos-
sible number of A’s components that might differ from
0. To stick to an example, assume we want to keep track
of the set of concurrent IP flows traversing a router. In
this case, N is obviously in the order of 264, i.e., the num-
ber of potential IP (source, destination) pairs. This is the
reason why enforcing a polylogarithmic constraint in N
is perfectly reasonable (see [1, Section 4.1] for a thorough
discussion).

Accuracy of the estimation. The general purpose of a stream-
ing algorithm is maintaining a summary over a data stream
(or a set of data streams in general) that allows to answer
queries about statistical aggregates defined over it. As-
sume that F and F̂ respectively denote the exact and
estimated value of a statistical aggregate of interest at
any time. We say that F̂ is ε-approximate if (1 − ε)F ≤
F̂ ≤ (1 + ε)F . We say that F̂ is (ε, δ)-approximate if
(1− ε)F ≤ F̂ ≤ (1+ ε)F with probability at least 1− δ [1].

While the above-mentioned measures of accuracy pro-
vide a direct measure of our ability to track the evolution of
an aggregate of interest over a stream, accuracy so defined
may not be suitable to assess the quality of an algorithm.
In some cases, a poor (worst case or expected) accuracy
does not derive from poor algorithmic choices, but rather
it reflects an intrinsic hardness of the problem at hand in
the streaming model. We show in Section 2.5 how compet-
itive analysis techniques [30] can prove effective to analyze
the performance of streaming algorithms when the focus
is on the algorithm’s achievable performance rather than
its absolute accuracy.

2.4. Fundamental streaming methods and algorithms

In this section, we briefly introduce some of the main
algorithmic techniques used to address the problems de-
scribed above. We only provide details of a few key results
that are in our opinion representative of the area, while we
only briefly discuss others, pointing the reader to relevant
papers or surveys.

Sampling. Sampling has found wide application in stream-
ing techniques. Sampling in a streaming scenario means
every input/update is seen but only a (polylogarithmic
sized) subset of items are retained, possibly with associ-
ated data such as the count of times the item has been seen
so far. The item sample can be chosen deterministically
or in a randomized way. In general, the hope is that the
sample is a statistically significant representative of the
whole stream and that aggregates computed exactly on
it can provide good approximations of their counterparts
computed over the whole stream. In the remainder, we

consider sampling in its most basic version: given a collec-
tion of n items, we want to collect a sample of size m < n
with uniform probability. In a streaming context, a fur-
ther complication arises, due to the fact that the length n
of the stream is not known a priori. The main techniques
used to circumvent this problem are reservoir sampling
and minwise hashing.

In its most basic form, reservoir sampling works as fol-
lows: we put the first m items in a reservoir. From this
point onwards, the i-th items has probability m/i to be
sampled. If sampled, the i-th items replaces an item from
the reservoir uniformly at random. For m = 1, it is easy
to see that the generic i-th item is chosen with probability
1/n. This follows since i) i is sampled with probability
1/i; provided it is still in the reservoir when the j-th item
is observed (of course, j > i) it remains in the reservoir
with probability 1 − 1/j. Hence the overall probability
that i is the sample returned at the end of the stream is
1
i

∏n−1
j=1

j
j+1 = 1/n. It is easy to extend this argument to

the case m > 1. This basic sampling alhorithm can be
made faster, as shown in [31].

Min-wise hashing is another effective way to uniformly
sample from a stream. Assume we have a set of of items
from a finite discrete set A, which we assume without loss
of generality to be {0, . . . , n − 1}, for a suitable n. 2 As-
sume we have a familyH of hash functions, each producing
a permutation of {0, . . . n − 1}. Assume H is such that,
if h is chosen uniformly at random from it then, for every
A ⊆ {0, . . . n− 1} we have:

P[min{h(A)} = h(x)] =
1

|A|
,∀x ∈ A.

This means that every item in A has an equal chance to
achieve the minimum if H is chosen uniformly at random
from H.

Assume we observe a stream of items from a finite dis-
crete set, as defined above. Assume we keep the item
achieving the minimum value with respect to a hash func-
tion chosen uniformly at random from a minwise family.
It is obvious that this achieves a uniform sample, since
each item has an equal chance to achieve the minimum.
Unfortunately, minwise independent hash function fami-
lies require Ω(n log n) truly random bits [32]. In practice,
it is possible to use approximately minwise independent
hash functions that require a logarithmic number of truly
random bits [33].

Compact summaries or sketches. Many problems are not
easily solved using sampling techniques. Such is for exam-
ple the problem of counting the number of distinct items
observed in a data stream, i.e., |{i : A[i] > 0}|. If a large
fraction of items aren’t sampled, we cannot know if they
are all same or all different for example. A complementary

2For example, if we were interested in the set of IP addresses, n
would be 232.
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approach relies on the use of compact data structures, or
synopses or sketches. A sketch is intended to record, pos-
sibly in an approximate way, important trends in the ob-
served stream, so as to at least approximately track the
evolution of one or more aggregates of interest. Using a
sketch, it may be hard or impossible to track the single
components of the signal A, but it might be possible to
track the evolution of one or more statistics of interest. An
important class is that of the sketches that are composable
and duplicate insensitive [24, 34, 35]. In the remainder,
we restrict to the cash register (and hence the time se-
ries) model, but the definitions we provide next hold for
more general models. Consider an order insensitive statis-
tics of interest and assume we want to estimate it over the
union of two streams A and B, i.e., we want to estimate
the aggregate over A + B. A sketching algorithm for its
estimation is composable if Sk(A + B) = merge(A,B),
where merge(·) is a suitable sketch aggregation function
that depends on the sketching algorithm and the aggre-
gate of interest [34]. Now, consider a stream in which each
item is a pair (i, a), with i a unique event identifier (e.g.,
geographical coordinates and time-stamp) and a a value
associated to the event (e.g., a temperature value)3. As-
sume the same event can be reported more than once (e.g.,
due to the presence of multiple data-paths). A sketching
algorithm is duplicate insensitive if, at any point in time,
the sketch computed by the algorithm is the same as if
each event were observed only once. Examples of compos-
able and duplicate-resilient sketches are the FM sketches
discussed a few paragraphs below.

Sum, mean and max. Sum is trivial in both the time se-
ries and cash register models. As remarked above, mean
is not obvious in the cash register model, since it requires
to keep track of the number of non-zero components com-
ponents of A. Keeping track of the max is obvious in the
time series model, but it requires Ω(N) space in the cash
register model [15].

Frequency moments. In this paragraph, we mainly focus
on F2 and briefly discuss results for Fk when k ≥ 3. F1

is trivial, since it is simply the sum of all updates. F0 is
the count of A’s non-zero components. While it is trivial
in the time series model, computing it in the cash register
model is an important problem that has received consider-
able attention dating back to the 80’s. For this reason, it is
treated in a separate paragraph. The problem of maintain-
ing the second frequency moment over A is a special case
of the problem of succinctly maintaining the 2-norm of a
set of vectors in <n. This problem has been successfully
addresses in the past and we point the reader to the contri-
bution of Achlioptas [36], which also provides an overview
of previous work on the subject. The special case of main-
taining the second frequency moment has been elegantly

3Note that we are thus assuming that i uniquely identifies the
event, i.e., (i, a) and (j, b) with i = j implies a = b.

addressed in [15] and its proof is presented below. Before
presenting the result, we briefly provide an intuition. As-
sume we consider the scalar product A · R, where R is
random vector whose entries are in {−1, 1} with proba-
bility 1/2. If R’s entries are pairwise independent, then
it is easy to prove that E

[
(A ·R)2

]
=
∑n
i=1 A[i]2. Intu-

itively, this tells us that (A ·R)2 is an unbiased estimator
of F2. To obtain an (ε, δ)-approximation of F2 we need to
expand this basic idea and show how R can be maintained
implicitly using (poly)logarithmic space and truly random
bits.

Theorem 1 ([15], Theorem 2.2). Considered any stream S
in the time-series or the cash register model4, it is possible
to maintain an (ε, δ)-approximation of F2 over A using

O
(

log(1/δ)
ε2

)
counters and O

(
log(1/δ)

ε2 log n
)

truly random

bits.

Proof. Set s1 = 16
ε2 and s2 = 2 log 1

δ . We implicitly main-
tain s2 independent N × s1 matrices R1, . . . ,Rs2 , where
Rr
ij ∈ {−1, 1} with equal probability and where, for every

fixed j and for every r, the Rr
ij ’s are 4-wise independent.

One way to achieve this is for instance shown in the proof
of Theorem 2.2 in [15].

Maintaining a sketch of A. Our sketch of A consists of
s1s2 counters Crj , where Crj = ARr

∗j , for r = 1, . . . , s2. As

a result, we have s1s2 = 32
ε2 log 1

δ counters. As to the num-
ber of random bits, for every matrix Rr, we need O(logN)
bits to generate the generic column Rr

∗j so that the Rr
ij ’s

are 4-wise independent, for a total of s1s2O(logN) =(
1
ε2 log 1

δ logN
)

truly random bits. Assume at time t item
at = (i, It). We update our sketch as follows: for every
j = 1, . . . , s1 and r = 1, . . . , s2, we let Crj = Crj + ItR

r
ij ,

where Rr
ij is generated on demand. Notice that the sketch

thus obtained is obviously the same we would obtain if we
updated A until time t and then computed its sketch.

Estimating F2. To estimate F2 at any point in time we
proceed as follows. Let

Yr =

∑s1
j=1(Crj )2

s1
.

Our estimation of F2 is median{Y1, . . . , Yr}.
Analysis. For any j = 1, . . . , s1 and r = 1, . . . , s2, set
X = (Crj )2. We have:

E[X] = E

[
(

N∑
i=1

A[i]Rr
ij)

2

]
=

N∑
i=1

A[i]2,

where the inequality immediately follows from 4-wise (and
thus pairwise) independence of the Rr

ij . On the other

hand, 4-wise independence implies that E
[
X2
]

=
∑N
i=1 A[i]4+

6
∑

1≤i<h≤N A[i]2A[h]2. Hence, simple manipulations show

4The result actually holds in the more general, turnstile model [1,
Section 4.1].
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that Var(X) ≤ 4
∑

1≤i<h≤N A[i]2A[h]2 ≤ 2F 2
2 . Now, for

every r, the Crj ’s (and thus the (Crj )2’s) are statistically
independent, since they depend on the Rr

∗j ’s, which are

generated independently. Hence, Var(Yr) ≤ 2F 2
2 /s1 and,

from Chebyshev’s inequality:

P[|Yr − F2| > εF2|] ≤
2F 2

2

s1ε2F 2
2

=
1

8
,

by our choice of s1. Now, given our choice of s2 and re-
calling that our estimate of F2 is median{Y1, . . . , Yr}, we
conclude the proof by observing that a standard applica-
tion of Chernoff’s bound allows to conclude that the prob-
ability that more than s/2 of the Yr’s deviate from F2 by
more than εF2 is at most 1/δ.

The approach just shown is particularly suited for F2

and easily extends to maintaining pairwise distances in
subspaces of <N . Unfortunately, it does not extend to
F0 and Fk, k > 2. In particular, maintaining Fk requires
N1−2/k for any real k > 2 [15, 37].

Distinct counting. Consider a stream of integers, each be-
longing to the discrete interval {1, . . . , N}. The distinct
counting problem asks to return the number of distinct
values that were observed. It is trivial to note that this is
exactly the problem of computing F0 in the cash register
model, i.e., ‖{i : A[i] 6= 0}‖, provided that, considered the
generic item at = (i, It), It > 0 always holds. For this
reason, in the remainder of this paragraph we refer to the
basic problem defined above and the t-th item at in the
stream is assumed to be an integer value. The basic tool
we consider is a counting sketch, i.e., a composable and du-
plicate insensitive counter of the number of distinct items
appearing in a stream. We consider two approaches: the
first is the approach proposed in the seminal paper of Fla-
jolet and Martin [16], considered in [38] and modified in
[15]. The second is a slightly different technique proposed
in [21].

FM sketches. In the following, we use the phrase “FM
sketch” to refer to any implementation of the original count-
ing sketch of [16]. FM sketches [16] use a simple approach
in which each sketch is a vector of m entries, each entry
being a bitmap of length k = O(logN). Considered the
s-th bitmap of the sketch. Every observed value is hashed
onto the bitmap bits using a (independently chosen) hash
function hs(·) : {1, . . . , N} → {0, . . . , log2N − 1}, such
that the probability of hashing onto the h-th bit is 2−h.
The bit under consideration is set to 1 if it was 0. After
processing the stream, let rs denote the position of the
least significant bit that is still 0 in the s-th bitmap: it
is easy to see that rs is a good estimator for log2 F0, the
logarithm of the number of distinct pairs observed. To im-
prove accuracy, we consider 1

m

∑m
s=1 rs as an estimator of

log2 F0, where m = O
(

1
ε2 log 1

δ

)
. This variant on the basic

FM sketch algorithm is called Probabilistic Counting with
Stochastic Averaging (PCSA).

LogLog Counting. In [39] a variant of the PCSA algorithm
is presented that reduces the size of the accumulation syn-
opsis from logN to log logN . However, the standard error
is increased from 0.78/

√
k to 1.30/

√
k, where k is the num-

ber of bitmaps. Which means that the LogLog Counting
is less accurate but the space complexity is improved con-
siderably. The algorithm differs from the PCSA in two
aspects. The first is that the maximum bit set to 1 is
maintained, in contrast to the PSCA where the position
of the least significant 0-bit is maintained, and the second
is the function used to compute the estimate.

Bar-Yossef et al. [21]. The approach of [21] relies on the
following intuition. Consider the elementary algorithm
that first picks a random hash function h : {1, . . . N} →
[0, 1] and then applies h(·) to all the items in the stream,
maintaining the value v = minnt=1 h(at), with n the stream
size. Then 1/v is in expectation the right approximation,
since if there are F0 independent and uniform values in
[0, 1] (the images of the stream’s items), then their ex-
pected minimum is around 1/F0.

In order to achieve (ε, δ)-accuracy, this basic idea is
extended in [21], with a sketching algorithm that maps
every observed value to an integer using a pairwise inde-
pendent hash function h(·) and at any point in time main-
tains the list of the L smallest distinct values observed so
far, where L = d96/ε2e. If v is the L-th smallest distinct
value maintained by the algorithm, LM/v is an estima-
tor of F0, where M = N3. Precision can be increased by
the standard trick of considering m independent and par-
allel copies of the algorithm and taking the median of the
corresponding estimations, where m = O

(
1
ε2 log 1

δ

)
.

Composability and duplicate-resilience. Both sketches are
composable and duplicate insensitive: Consider two streams
S1 and S1 of values from the same universe {1, . . . , N} and
let SkFM (S1) and SkFM (S1) be their FM sketches. Then
it is straightforward to see that be Sk(S1) OR Sk(S2) is the
sketch corresponding to S1∪S2. As for the sketches of [21],
every such sketch is an array of m lists, each maintained
according to the algorithm described above. Merging of
two such sketches is simply achieved as follows: for every
s = 1, . . . ,m, merge the s-th lists of the two sketches and
keep the L smallest values of the merged list. Both ap-
proaches achieve similar bounds in terms of efficiency and
precision, as stated by the following

Theorem 2 ([38, 16, 21]). Considered a stream S of inte-
gers, it is possible to maintain an estimate F̂0 of the num-
ber F0 of distinct items in S using O

(
1
ε2 log 1

δ

)
memory

words, such that:

P
[
|F̂0 − F0| > εF0

]
≤ δ.

Quantiles. The quantile problem is trivial to solve in the
time series model. On the other hand, Ω(N) space re-
quired to compute quantiles exactly in the cash register
model [17]. The folklore method of sampling values ran-
domly and returning the sample median works inO

(
(1/ε2) log(1/δ)

)
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space to return the median, i.e., the (1/2, ε)-quantile, to
ε-approximation with probability at least 1− δ [1]. Better
strategies allow to use O

(
(1/ε)(log2(1/ε) + log2 log(1/δ))

)
space and are based on randomized sampling [40]. The
(φ, ε)-quantile problem can also be addressed determinis-
tically in a streaming setting. In this case, the currently
best known algorithm uses O

(
(log2(ε‖A‖1))/ε

)
space [18],

where this strategy is applied to the case of answering
quantile queries in a sensor network.

Top-k items and heavy hitters. Negative results for the
top-k and heavy hitter problems have been discussed in
Subsection 2.2. Therefore, in this paragraph we restrict to
effective algorithmic strategies for the (φ, ε)-heavy hitter
problem. Research about top-k and heavy hitter problems
has been extremely active in the recent past. For the sake
of space, in this paragraph we discuss some key contribu-
tions, referring the reader to [1] for a thorough overview.

Deterministic strategies: the Space-Saving algorithm. When
each update increases the value of one component of A by
exactly 1 unit, the space-saving algorithm proposed in [41]
solves the (φ, ε) heavy hitter ptoblem in O(1/ε) space. The
idea is to maintain, at any point of the execution, m coun-
ters, each recording (possibly in an approximate way) the
current count of an element (i.e., a component of A in
the cash register model). The value of m depends on the
required accuracy, in particular m = O(1/ε). The coun-
ters are updated in a way that accurately estimates the
frequencies of the significant elements, and a lightweight
data structure is used to keep elements sorted by their esti-
mated frequencies. Ideally, the i-th most frequent element
ei should be accommodated in the i-th counter Ci. As-
sume fi is the true frequency of such element. In general,
Ci 6= fi, due to errors in estimating the frequencies of the
elements. For the same reason, the order of the elements
in the data structure might not reflect their exact ranks,
so that Ci might contain some element êi different from
ei. Denote by min the value of the counter associated to
the element with lowest estimated frequency kept in the
summary, i.e., em.

Given these definitions, the algorithm is straightfor-
ward. If a monitored element is observed, the correspond-
ing counter is incremented. If the observed element e is
not among monitored ones, it is given the benefit of doubt
and it replaces the element with lowest estimated hit num-
ber, i.e., em = e. Counter Cm is incremented to Cm + 1,
since the new element e could have actually occurred be-
tween 1 and Cm+1 times. For each monitored element ei,
the algorithm keeps track of its maximum overestimation,
εi, resulting from the initialization of its counter when it
was inserted into the list. That is, when starting to mon-
itor e by counter Cm, its maximum overestimation error
εm is set to the counter value that was evicted. To imple-
ment this algorithm, the authors propose a simple stream
summary data structure that cheaply increments counters
without violating their order, and that ensures constant
time retrievals/updates.

Using randomization: the Count-Min sketch. We describe
the CM-Min sketch proposed in [22], since this a versa-
tile data structure whose application extends beyond the
heavy hitter problem to rangesum queries, scalar product,
quantiles and moments. The Count-Min sketch data struc-
ture (CM-sketch for short) is based on a 2-dimensional
array whose size is determined by design parameters ε
and δ (their meaning explained further). Every element
of the array is a counter C[j, l], where j = 1, . . . , d and l =
1, . . . , w, with d =

⌈
ln 1

δ

⌉
(depth) and w =

⌈
e
ε

⌉
(width).

Every entry is initially 0. The data structure also con-
sists of d hash functions h1, . . . , hd chosen uniformly at
random from a pairwise-independent family, so that hr :
{1, . . . , N} → {1, . . . , w}.

The update procedure of the CM-sketch is straightfor-
ward: upon observing item at = (i, It) at time t, for every
j = 1, . . . , d, set C[j, hj(i)] = C[j, hj(i)] + It. Ideally, this
operation corresponds to the (exact) update operation on
A: A[i] = A[i] + It. When using the CM-sketch, our
estimation of A[i] (point-query) is minj=1...d C[j, hj(i)].

CM sketch and heavy hitters. First note that it is possi-
ble to maintain the current value of ‖A‖1 at any time t,
since ‖A‖1 =

∑t
i=1 Ii. The CM-sketch based algorithm

for heavy hitters in the cash register model makes use of
a min-heap and it works as follows. Upon receiving item
(i, It), it updates the sketch as before and it estimates
A[i] to check whether it is above the threshold φ‖A|‖1, in
which case A[i]’s estimate is added to a heap. The heap
is kept small by checking that the current estimated count
for the item with lowest count is above threshold; if not, it
is deleted from the heap. At any point in time, all items in
the heap whose estimated count is above φ‖A|‖1 are can-
didate heavy hitters. It is possible to prove the following
result:

Theorem 3 ([22]). The heavy hitters can be maintained
in the cash register streaming model by using CM sketches
with space O((1/ε) log(‖A‖1/δ)), and time O(log(‖A‖1/δ))
per item. Every item which occurs with count more than
φ‖A|‖1 time is output, and with probability at least 1− δ,
no item whose count is less than (φ− ε)‖A‖1 is output.

Histograms. There is a simple dynamic programming so-
lution [1, 23] when there are no space constraints. This al-
gorithm computes the optimal B-bucket histogram in time
O(N2B) and space O(BN). This result has been improved
to O(N2B) time and O(N) space in [42]. In [23], the
authors propose an algorithm for approximate histogram
maintenance that requires time and space
poly(B, 1/ε, log ‖A‖, logN).

Computing aggregates in the window streaming model. We
briefly discuss some key contributions for the sliding-window
model. A general consideration is that even simple prim-
itives such as counting or summing cannot be performed
exactly in this model, unless one uses an amount of mem-
ory that is linear in N , i.e., the support of A.
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One key contribution to this line of research is the pa-
per [20] (see also [43, Chapter 8]). Here, the authors first
address the following elementary Basic Counting problem:
given a stream of data elements, consisting of 0’s and
1’s, maintain at every time instant the count of the num-
ber of 1’s among the last W elements. It is possible to
prove [20] that maintaining the exact count requires Θ(N)
space. The authors show a general technique addressing
this problem and related ones, which relies on the use of
Exponential Histograms. They are thus able to prove that
basic counting can be performed with accuracy ε using
O((1/ε) log2 εW ) space, with updates that are performed
in O(1) amortized and O(logW ) worst-case time. This
result is asymptotically tight and it is further extended
to the Sum problem: Given a stream of data elements
that are positive integers in some range [0 . . . , R], main-
tain at every time instant the sum of the last W elements.
Again, ε accuracy can be obtained using polylogarithmic
space [20]. Further results are shown for a general class of
weakly additive functions, including Lp norm for p ∈ [1, 2].
Improved results for the aggregates considered in [20] (in
particular weakly additive functions) and results for Lp,
when p 6∈ [1, 2] and geometric mean are presented in [44].
Other basic tools, such as reservoir sampling, have been
extended to the windowed model [45].

Time Decaying Sketches. A different, more complex ap-
proach is presented in [46] introducing a new sketch that
maintains duplicate insensitivity, asynchronous arrivals and
time decay of the processed data simultaneously. The al-
gorithm is capable of generating a lot more than distinct-
values estimates, such as selectivity, frequent items and
decayed-sum estimates. Considering the fact that it sup-
ports time-decay through user defined decay-functions, such
as a sliding window function, it is a very powerful approach
to sensor data aggregation.

Every item is a tuple i = (ui, wi, ti, idi), where idi is
a unique integer value identifying the specified item, ui is
an observed value and ti a timestamp. Item i is further
assigned a weight wi that, combined with a user-defined
decay function f(κ − t), reflects the change in the signif-
icance or confidence in the value ui over time, where κ
is the query time and t the timestamp of the item. The
overall weight of an item is defined as: wi · f(κ− t).

For every distinct item a range of integers, rκi is de-
fined such that all ranges are disjoint, i.e. rκi = [wmax ·
idi, wmax · id + wi · f(κ − t) − 1]. The size of the range
is exactly w · f(κ− t). Then, M + 1, initially empty ran-
dom samples S0, S1, . . . , SM are defined, where M is of
the order of log2 (wmax · idmax). At first, each integer in
rκi is assigned in sample S0 and then for j = 0 . . .M − 1
each integer in Sj is placed in Sj+1 with probability ap-
proximately 1/2. Hence the probability that an integer is
assigned in Sj is pj ≈ 1/2j .

The assignment of integers to samples is done through
the time-efficient Range − Sampling technique [47] that
quickly samples the whole range rκi in time O(log |rκi |),

using a pairwise independent hash function. The function
call Range − Sample(rκi , l) actually returns the number
of integers that belong to sample Sl. When at least one
integer of a rκi range is assigned to a sample then the item
i is actually stored in that sample.

Because the query time κ, and hence the decayed weight
of an item, wi · f(κ − t), is unknown at the time the
item arrives in the stream, an “expiry time” is defined
for item i at level j such that as long as κ < expiry(i, j)
the range rκi has at least one integer assigned to Sj , and for
κ ≥ expiry(i, j), rκi has no integers assigned to Sj . This
way, with the arrival of an item in the stream the item is
tagged with its expiry time and is assigned to Sj as long
as the current time is less than expiry(i, j).

For smaller values of j, Sj the size of the samples may
be too large and hence take too much space. As a result
the algorithm stores only at most τ items in each sample
with the largest expiry times. The size τ of the samples
is a critical factor of the algorithm and depends on the
desired accuracy (the bigger the sample the more accurate
the estimate will be). Moreover, since the guarantees of
the algorithm are of the form: “With probability at least
1 − δ, the estimate is an ε-approximation to the desired
aggregate”, the maximum size of a sample depends on the
approximation parameter ε.

An essential decayed aggregate to the computation of
distinct-value estimates is the decayed sum of all distinct
items in the stream, i.e. V =

∑
(u,w,t,id)∈D w · f(c− t),

whereD is the set of distinct items. We recall thatRange−
Sample(rκi , l) returns exactly the number of integer in rκi
that belong to Sl, i.e. the size of the range. As a re-
sult, to compute the decayed sum it suffices to compute:
1
pl

∑
i∈Sl

RangeSample(rκi , l). To estimate the number of
distinct-value items, we only have to set the weight, wi of
each item to 1 and compute the decayed sum over a sliding
window.

2.5. Competitive analysis of streaming algorithms

We briefly discuss a novel approach that was recently
proposed to measure the performance of a streaming al-
gorithm, based on the use of competitive analysis [30].
Literature on streaming algorithms has mostly considered
the degree of accuracy of algorithms and not their perfor-
mance with respect to the best that can be achieved. In
order to assess the quality of the algorithm, it may be use-
ful to adopt the competitive point of view and judge the
accuracy of a streaming algorithm against the accuracy of
an offline algorithm with the same resource limitations.

This line of research was initiated in [48], where the
authors consider the following problem: we consider a
streaming model in which the algorithm observes a se-
quence {a1, a2, . . .} of items over time, at being the item
observed during the t-th time step. In the sequel, we as-
sume without loss of generality that the value field of aj
belongs to the (integer) interval [1,M ] for some M > 1.
In fact, this is an example of the time series, where aj =
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(j, Ij). For the sake of simplicity, in the rest of this sub-
section we denote by aj both the j-th item and its value.

We further assume that, at every time t, we are only in-
terested in maintaining statistics over the window of items
observed in the interval {t−W + 1, . . . , t}. In the follow-
ing, gt denotes the item of maximum value maintained by
the algorithm at time t and mt denotes the offline opti-
mum’s value in the window at time t. The required mem-
ory space is measured in units, each unit being the amount
of memory necessary to exactly store an item. The offline
algorithm has the same memory restrictions as the online
algorithm, but it knows the future. In particular, both al-
gorithms are allowed to maintain, at any time t, at most k
items among those observed in {t−W + 1, . . . , t} (where,
typically, k << W ).

While approximating the maximum value over a sliding
window can be done using polylogarithmic space [44], the
basic task of maintaining the maximum value exactly is
not feasible, unless one stores a number of elements in
the order of W and this result also holds for randomized
algorithms [20]. In [48] the authors consider the following
objective functions, that measure how far the streaming
algorithm is from achieving this goal, both at every point
in time and in the average over the entire sequence.

Aggregate max: Maximize
∑
t gt, i.e., the average value of

the largest item maintained by the algorithm.

Anytime max: For every t, maximize gt, i.e., maximize the
value of the largest item in the algorithm’s memory at time
t. As shown further, this function is harder to maintain
for every t.

Competitive analysis. The performance of the streaming
algorithm is compared against the optimal algorithm that
knows the entire sequence in advance [30]. Hence, in this
the competitive ratio r(k,W ) is defined as:

r(k,W ) = max
a∈S

∑
t gt(a)∑
tmt(a)

,

where S is the set of possible input sequences and gt(a)
(respectively, mt(a)) is the online algorithm’s (respectively
the offline algorithm’s) maximum value at time t when
input sequence a is observed.

Aggregate max. In [48] the authors prove an 1 + Ω(1/k)-
competitive randomized lower bound for this problem. At
the same time, they prove that a simple, bucket-based
heuristic is asymptotically achieves competitive ratio (k−
1)/k. The heuristic works as follows: the stream sequence
is partitioned into parts of size W/k. Part s starts at
time (s − 1)W/k + 1 and ends at time sW/k. For every
part s of the sequence, a particular slot of memory is ac-
tive, the memory slot i = 1 + (s mod k). For each part
of the sequence, the active slot of the memory accepts
the first item. In every other respect, the active slot in
each part is updated greedily: the algorithm updates the
slot value whenever an item of larger (or the same) value

appears. Clearly, the partition-greedy algorithm can be
implemented very efficiently (using two counters to keep
track of the current active slot of memory and the number
of items seen in each part). Interestingly enough, there is
an asymmetry between max and min for this problem. In
particular, the aggregate min problem turns out to have
unbounded competitive ratio.

Anytime max. In the aggregate max problem, the objec-
tive is to optimize the sum of the maximum value whereas
here it is to optimize the maximum. That is, we are inter-
ested in minimizing

max
t

gt
mt

.

for a worst case stream of values. It is possible to show
that the competitive ratio in this case cannot be indepen-
dent of the values. More precisely, the competitive ratio is
O( k+1

√
M), where M is the maximum value in the stream.

This is achieved by a simple bucket-based algorithm. It is
also relatively easy to show that this result is tight.

2.6. Experimental comparison of duplicate insensitive count-
ing algorithms

In this section we discuss the effectiveness of streaming
algorithms in current commercial off-the-shelf hardware
that are used in mobile/sensor environments based on the
experimental evaluation conducted in [49]. In particular,
three streaming algorithms PCSA ([16], Sec. 2.4), LogLog-
Count ([39], Sec. 2.4) and TDS ([46], Sec. 2.4) were eval-
uated in a testbed of resource-limited hardware devices.
The focus of the evaluation was on the space complexity,
time complexity and absolute error of the algorithms in
real-world conditions, in order to determine if they have
acceptable efficiency when applied in highly restrained en-
vironments. The available platforms are listed in Table 1.

A core aspect in the implementation of [16, 39] is the
selection of the hash function. In fact, Flajolet and Martin
analyze the error guarantees of their algorithm assuming
the use of an explicit family of hash functions with ideal
random properties (more precisely, that the hash function
maps each value uniformly at random to an integer in the
specified range). Given that fact, the best selection of
hash functions to be used for the experiments is MD4,
which both approximately conforms to the assumption of
Flajolet and Martin and is widely used efficiently in a va-
riety of applications. The parameters in these algorithms
are the number of bits per bitmap vector, bbits, and the
number of bitmaps, k. We set bbits = 32 bits/bitmap and
k = 28(= 256) bitmaps. Thus the standard error for the
LogLog Counting algorithm is ≈ 8.1% and for the PCSA
algorithm is ≈ 4.8%. This is a decent selection regard-
ing the hardware we have at our disposal, as the memory
space requirements are too small for these two algorithms
to consider it a restraint.

A key component of the algorithm of [46] is the com-
putation of the function expiry(i, j), which includes the
use of the RangeSample(rκi , j). In the formal description
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Table 1: Time measurement (sec) for 6000 items, duplicate rate=20%

Processor RAM TDS PCSA LogLogCount

266MHz Intel XScale (Netbridge) 32MB 23.468149 0.127454 0.129718

400MHz ARM920T (Freerunner) 128MB 6.310182 0.106261 0.106734

500MHz AMD Geode LX800 (Alix) 256MB 1.282864 0.042732 0.043274

Figure 1: PCSA and LogLog Counting over the different platforms

of the Range Sampling algorithm[47], the recursive proce-
dure Hits achieves time complexity of separately sampling
each of the integers is of the order of log2 (|rκi |). The ap-
proximation parameter, ε is set to 0.1, so as each sample
size, τ , is equal to τ = 60/ε2 (which is proposed by the
authors of [46] for the computation of the decayed-sum).
The selection of ε to 0.1 is done because any smaller se-
lection increases the space complexity and hence the time
complexity of the algorithm to borderline bounds. The se-
lection of the approximation parameter result to the max-
imum number of the distinct elements to be counted, i.e.
the size of a sample( τ = 60/ε2). Hence, the maximum
number of elements to the correct counting, for ε = 0.1, is
6000 elements.

In Fig. 1, we observe that both PCSA and LogLog
Counting algorithms are efficient enough when applied in
a such resource-restrained environment, even when consid-
ering input sizes of the order of hundreds of thousands or
even millions.

When inserting duplicates in the input dataset, the
results in time measurement and standard error evalua-
tion are the same as before for the two algorithms PCSA
and LogLog Counting. Whereas, the sketch-based algo-
rithm performs much faster than without duplicates. This
is observed because the most time-consuming part of the
process of the input dataset is the computation of the
expiry(i, j) of the item for the levels it belongs to, as well
as managing the overflow (in size) of a sample and the
sorting of its items’ expiries for that purpose. The first is
just a check whether the item has already been processed
or not, and if not then continue with the next input. In

Figure 2: Duplicate rate performed on Freerunner

Fig. 2 the outcome of the experiments performed in the
open moko neo freerunner for input size = 6000 items.

3. Aggregation in Networks of Tiny Artifacts

3.1. Introduction

3.1.1. Distributed vs centralized streaming models

In section 2 we presented aggregation techniques for
centralized streaming models, where a single processor ob-
serves a huge, rapidly updating data stream in a single
pass, and needs to efficiently compute important statisti-
cal aggregates over the distribution of the data.

In this section, we will use these techniques as building
blocks to study much more general, distributed stream-
ing models, where many, independent streams are contin-
uously generated from remote sites over a wide network
infrastructure, and the statistical queries now refer to the
union of these streams. The prevailing motivation behind
such distributed models is that of sensor networks, where
devices with limited storage and processing capabilities
and extremely restricting energy independence are contin-
uously monitoring physical parameters, such as temper-
ature, and a base-station must be able to quickly query
the entire network for aggregates such as average values,
or critical events that exceed certain thresholds. Usually,
such networks are wireless and battery-powered, and the
cost of communication between the sensors, with respect
to battery life, is orders of magnitude greater than the cost
of local processing within each sensor.

There are two levels of computation in this distributed
setting. First, each sensor must locally process its own
stream, respecting its physical space and time complexity
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limitations. This can be done by deploying the techniques
of section 2. At a higher level, all this information needs
to be aggregated properly throughout the network struc-
ture (and usually routed towards a base station) in order
to answer some query, a task requiring further in-network
computation and coordination. Notice that the trivial so-
lution of forwarding all data to a base station and perform-
ing there a local computation is not a realistic option, since
the magnitude of the data far exceeds the communication
(and storage) capacity of the network.

This makes clear the need of applying clever in-network
aggregation techniques that distribute the computational
burden among the nodes of the network, minimizing the
communication cost and extending our network’s energy
lifespan. Appropriate and efficient data summaries must
be maintained, forwarded and updated throughout the
nodes of our network, capable of answering the statisti-
cal queries we are interested in, as quickly and with the
highest precision possible.

3.1.2. The model

We have a set of nodes (sites, sensors) I = {1, 2, . . . , |I|},
indexed by i, each of which is observing a data stream
Si. In the current section we want to focus on the decen-
tralized aspects of network aggregation, and so, to keep
things clear, we are not going to consider formal streaming
models at the lower, sensor level like we did in section 2.
Instead, for our exposition it is enough to think of the in-
dividual streams, simply as being multisets drawn from a
(finite) universe U , |U | = N , i.e. Si = {ai 1, ai 2, . . . , aimi

},
ai j ∈ U . Notice, though, that all algorithms we are go-
ing to present can be applied to the cash register, some
of them even to the more general turnstile model. We
set n = max

{
|I| ,

∑
i∈I mi

}
. In general, we want to an-

swer aggregate queries Q (∪iSi) over the union of our data
streams., i.e. the entire observation set.

Efficiency. We will consider our algorithms being efficient
if each node transmits, at the worst case, at most a poly-
logarithmic number of messages (values), i.e. has a com-
munication load of O(polylog(n)).

Network topology. The predominant assumption in sensor
network computation is that our devices form a tree, at
the root of which is a special device called the base-station
which is responsible for answering the aggregate queries.
This is done in roughly two phases: first, the base station
distributes the query to all the nodes and then the needed
information is pulled back to the root, in most cases us-
ing a fair amount of sophisticated in-network aggregation
by the intermediate nodes along the way, which is essen-
tially the subject matter of our exposition in this section
3. Every node merges (aggregates) information about its
own stream with information received from its children and
transmits this partial information about the distribution
of the entire underlying data set to its parent.

In fact, no explicit physical tree structure of the com-
munication links is required; only a well defined tree-routing
protocol that is connected (the information transmitted
from each node can reach the base station) and cycle-free
(information from the same node is not received twice).
This can be either predefined since the deployment of the
network, or computed on-the-fly during the distribution
phase by some spanning-tree procedure like breadth-first-
search, especially in the case of dynamic, wireless net-
works. We deal with tree-based aggregation techniques
in section 3.2.

Although such single-path, tree-based aggregation mod-
els capture the essence of sensor network communications
and are straightforward to analyze, they come with a huge
disadvantage: in case of a packet loss or a node failure,
an entire subtree is disconnected and the aggregating pro-
cedure is rendered useless, especially when this node is
close to the base station. In general, sensor networks are
far from reliable with respect to such events, since usually
many inexpensive devices are cast over a wide unattended
or even hostile terrain. In addition, wireless networks are
prone to environmental interferences, signal strength fad-
ing, packet collisions, etc [50, 5].

We can deal with lossy networks by using multi-path
routing aggregation where each node may forward its in-
formation to many neighbors, reaching the base station
via more than one path. This is a generic idea and can
be approached in many ways, for example using directed
diffusion or other gossiping techniques. We discuss this
important issue of robustness in unreliable networks in sec-
tion 3.3.

3.1.3. Queries, summaries and approximations

Queries are answered by maintaining auxiliary data
structures called summaries5 which are clever and suc-
cinct synopses of the underlying data set observed so far.
More formally, following the influential exposition of Mad-
den et al. [14], for an aggregate query Q to be able to be
computed in-network, a summary Sk must be maintained,
supporting three fundamental operations:

• Initialization (I): Used by each node i to create an
instance SkSi

6 of the summary to describe its own
stream, i.e. I(i) = SkSi .

• Aggregation (F ): Used in intermediate steps of the
aggregation procedure to merge two instances SkM1

,
SkM2

describing underlying multisets M1 and M2,
respectively, into a single summary instance SkM1∪M2

describing their union, i.e.

SkM1∪M2 = F (SkM1 ,SkM2). (1)

5The terms sketch and synopsis are also widely used.
6Sometimes we will use subscript notation SkM if we want to

give emphasis on the underlying multiset M our summary (instance)
describes.
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• Evaluation (E): Used at the final step of the aggre-
gation procedure (e.g. at the base-station) to extract
the answer to query Q from an instance Sk∪iSi de-
scribing our entire data set, i.e. Q(∪iSi) = E(Sk∪iSi).

For example, the AVG aggregate for the mean value can be
computed by maintaining a summary consisting of only
two numerical values 〈x, y〉, where I(Si) = 〈

∑mi

j=1 ai j ,mi〉,
F (〈x1, y1〉, 〈x2, y2〉) = 〈x1 + x2, y1 + y2〉 and E(〈x, y〉) =
x/y.

Not every aggregate query can be computed exactly
by such a simple summary. As we saw in section 2, some
queries are inherently much more difficult to compute and
novel summaries must be utilized to achieve efficient ap-
proximations. These limitations trivially extend to the
more general model of distributed streaming. For example,
to compute exactly a complex query such as the MEDIAN

would require pushing all Ω(n) data values, in the worst
case, through the whole network and up to the root [17,
14]. What is the key property that characterizes this di-
chotomy?

Algebraic vs holistic queries. [51, 14]. A query will be
called algebraic if it can be computed exactly by a sum-
mary of size O(1) (with respect to the size n of the entire
observation multiset). Examples of algebraic queries in-
clude: MIN, MAX, SUM, COUNT and AVG. This is not the case
for more complex queries for which the summaries for ex-
act computation must grow linearly with every intermedi-
ate application of the aggregation operation (1), essentially
implementing the brute-force, centralized approach of for-
warding the entire data set to a base station. Such queries
are called holistic and include MEDIAN and, more generally,
φ-quantiles, top-k/heavy hitters and DCOUNT (counting the
number of distinct elements). Non-holistic aggregates are
also known as decomposable, due to the form of the com-
putational rule (1).

Fortunately, we can overcome these linear space re-
quirements that would result to some sensors having an
unacceptable load of transmitting Ω(n) values, by try-
ing to devise summaries with O(polylog(n)) sizes that are
able to answer our queries approximately, within suffi-
cient accuracy. For this, we are going to use valuable
knowledge obtained from the fundamental streaming al-
gorithms of section 2. A rule of thumb is that summaries
using O(poly(ε−1, log n, logN)) storage, can approximate
answers within a factor of ε [19].

Duplicate sensitivity. An aggregate query Q is called du-
plicate-insensitive if it is not affected by the insertion of
multiple occurrences of the same element in the underly-
ing data set. Formally, if for every multiset M , Q(M) =
Q(M), where M is the simple set induced by M (if we
delete multiple occurrences). Duplicate-insensitive queries
include MIN, MAX and DCOUNT, while notable duplicate-
sensitive queries are COUNT, SUM and the φ-quantiles. This
notion naturally extends to summaries, where a summary

will be called duplicate-insensitive if for every multisets M ,
M ′ ⊆M , its aggregation function F satisfies the property

F (SkM ,SkM ′) = SkM , (2)

for all possible instances of the summaries describing M
and M ′.

Duplicate sensitivity plays an important role when we
design multi-path aggregation schemes (see section 3.1.2).
In such settings, it is possible for the very same data
point in the stream of some sensor, to be aggregated many
times along different paths from the sensor to the base
station. Such events obviously affect duplicate-sensitive
queries and so we must try to deploy duplicate-insensitive
summaries to answer them correctly.

3.2. Tree-based aggregation

As we discussed in section 3.1.2, when we perform in-
network aggregation using a tree routing protocol, each
observation in our data set is aggregated through a well-
defined, single path from its sensor to the root of the tree.
Simple, algebraic queries can be answered exactly, using
natural summaries in the spirit of our example for AVG

in section 3.1.3. This is not the case for holistic queries.
In section 3.2.1 we present two very important summaries
for sensor networks computing, namely q-digest and GK
summaries, that efficiently give approximate answers to
quantile queries and in 3.2.2 we discuss how we can readily
apply Flajolet-Martin sketches to compute distinct items
queries, since this is going to play a critical role in the
development of duplicate-insensitive summaries for multi-
path aggregation of section 3.3.

3.2.1. Quantiles

q-digests [52]. Consider a perfect binary tree of height
logN . To each node v we assign a bucket [vmin, vmax]
such that the root’s bucket is our entire range of possi-
ble values [1, N ] = U and each node’s bucket is divided
equally among its children, i.e. root’s children have ranges
[1, N/2], [N/2, N ] and, at the lowest level, all leaves have
buckets of length 1. A q-digest QDM over a multiset M
is a subset of the nodes of the above binary tree. To each
node v of QDM , along with his bucket [vmin, vmax] we as-
sign a counter cv. Furthermore, each element x ∈ M is
assigned to only one7 node-bucket v with x ∈ [vmin, vmax].
Counter cv equals the number of M ’s elements assigned
to v. Obviously,

∑
v∈QDM

cv = |M |. We will maintain
the following two key properties for every q-digest. For all
nodes v in QDM ,

cv ≤ d|M | /ke , (3)

if v is not a leaf and

cv + cvp + cvs > d|M | /ke , (4)

7This is the crucial point which differentiates q-digests with tra-
ditional histograms where every bucket counts all items from M in
its range.
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if v is not the root and vp and vs are v’s parent and sibling
respectively. k is a user defined integer, called compression
parameter, to be determined later on. Intuitively, condi-
tion (3) tries to keep the bucket counts balanced through-
out the summary and will also guaranty the desired formal
error bounds for q-digests. Condition (4) prevents having
two consecutive generations of nodes with small counts.
As we will see, we achieve this by merging two siblings’
buckets to the parent’s count. This is essentially the main
idea behind the compression achieved by q-digests.

Initialization. Each sensor i creates a q-digest QDSi
for its stream in the following way. It maintains a con-
ceptual copy of the perfect binary tree (at the end, only
the needed nodes will be instantiated). Every leaf of the
tree corresponds to a single element in U and, by observ-
ing their frequencies in Si, we set accordingly the counters
of the leaves’ unit length buckets. Then, by traversing
the tree in a bottom-up and left-to-right way, whenever a
node v violates property (4), we set cvp ← cv + cvs and
deactivate nodes’ v and vs counters. We call this opera-
tion compression. Notice that, because of the bottom-up
way of our compression scheme, property (3) will never be
violated. We continue this process, until no further com-
pressions can be done. The nodes left with active counters
constitute QDSi .

Aggregation. Suppose we have two q-digests QDM1
,

QDM2
using the same compression parameter k. Then

we aggregate them to a single q-digest QDM1∪M2
in the

most simple way: We merge the node-buckets of the two q-
digests by taking the union of their nodes QDM1

∪QDM2
,

making sure that if a node appears in both summaries, we
set its count equal to the sum of the two individual counts.
Finally, we compress the resulting tree.

Evaluation. When a summary QDM is questioned for
a φ-quantile of the multisetM , we do a post-order traversal
of its nodes, summing the node counts along the way. As
soon as this sum exceeds dφ |M |e, we output vmax as our
answer, where v is the node currently visited.

Using property (3) one can prove [52] that for every
node v in a q-digest QDM with compression parameter
k, the (additive) error of its count cv (with respect to the
actual frequencies of the distribution of M) is at most
logN
k |M | and, most importantly, the aggregation opera-

tion respects this errors. From property (4) we can show
that |QDM | ≤ 3k and so, by choosing a compression pa-
rameter of k = logN

ε one can answer (φ, ε)-quantiles using
a q-digest of size 3

ε logN . It is an immediate consequence
that, by utilizing the above in-network aggregation tech-
nique, we can answer ε-approximate quantiles for our en-
tire distributed stream

⋃
i Si, with each sensor transmit-

ting only a q-digest of size O( 1
ε logN).

GK summaries [18, 53]. For the following, rM (x) will de-
note the rank8 of element x in the multiset M . An (ε-

8Defining a notion of rank for multisets may initially seem prob-
lematic, since the same value x may appear more than once in M .

approximate) GK summary GK = GKε,M over a multiset
M is a finite non-decreasing sequence 〈x1, x2, . . . , x`〉, xj ∈
M , where x1 = minM and xl = maxM , together with two
functions rmin

GK, rmax
GK

9 such that rmin(x1) = rmax(x1) = 1,
rmin(x`) = rmax(x`) = |M | and

rmin(xj) ≤ rM (xj) ≤ rmax(xj) (5)

for all xj ∈M and

rmax(xj+1)− rmin(xj) ≤ 2ε |M | , (6)

for all j = 1, 2, . . . , `− 1. The intuition behind (5) is that
we maintaining lower and upper bounds on the true ranks
of the elements in the summary and, in addition, from (6),
these approximations are “dense” with respect to M .

For the in-network aggregation procedure, in order to
describe an underlying multiset M we are not going to
maintain at every step just a single GK summary, but in-
stead collections {GKε1,M1

,GKε2,M2
, . . . ,GKεk,Mk

}, wich
we’ ll call extended GK summaries, such that the Mj ’s are

mutually disjoint multisets with M =
⋃k
j=1Mj and no

two GK summaries are of the same class, where the class
of a GK summary is defined to be class(GKεj ,Mj ) =
blog |Mj |c. Notice that the above properties trivially im-
plies

k ≤ log |M | . (7)

Initialization. Fix some (desired approximation) ε > 0.
Each sensor i creates an extended GK summary {GKε/2,Si}
consisting of a single GK summary, by sorting the entire
stream Si and picking elements of rank 1, ε |Si| ,
2ε |Si| , . . . , |Si| and setting, naturally enough, rmax

GKε/2,Si
=

rmin
GKε/2,Si

= rSi . It is easy to see that the summary created

is a valid ε/2-approximate GK summary, i.e. property (6)
holds, and that |GKε/2,Si | ≤ 1 + 1/ε.

Aggregation. Let eGK1, eGK2 be two extended GK
summaries. We aggregate them by initially taking their
union eGK1 ∪ eGK2. The resulting summary may not
be valid since it is possible to contain more than one (but
at most two) GK summaries of the same class. We deal
with this by scanning eGK1 ∪ eGK2, in increasing order
of classes, and whenever we find two GK summaries hav-
ing the same class κ, we merge them into one new GK
summary of class κ + 1. After this process is completed,
we apply a compression to the extended GK summary to
reduce the size of its newly created GK summaries. We
describe these two operations, called by Greenwald and
Khanna [18] combine and prune, below:

We can override this difficulty by differentiating elements of the same
value by adding, for example, a time-stamp parameter to our obser-
vations and sorting our streams using a lexicographic ordering. For
the remaining of this survey we will assume that for every multi-
set M there is a predefined sorting with which we can answer order
statistics M(j) for M and define rM (x) to be the unique index j,
j = 1, 2, . . . , |M | such that x = M(j).

9To keep the notation light, we will feel free to drop the subscript
GKε,M whenever it is clear to which GK summary we are referring
to.

14



• Combine: Let GK1 = GKε1,M ′
1

= 〈x1, x2, . . . , x`1〉,
GK2 = GKε2,M ′

2
= 〈y1, y2, . . . , y`2〉 be the two GK

summaries, of the same class κ, we wish to merge.
For each x ∈ GK1 define

y′(x) = max {y ∈ GK2 | y < x}
y′′(x) = min {y ∈ GK2 | y > x}

Now, create the new quantile summary GK′ =
GKε′,M1∪M2

by simply sorting the union GK1 ∪
GK2 and defining functions rmin

GK′ , rmax
GK′ as

rmin
GK′(x) =

{
rmin
GK1

(x) + rmin
GK2

(y′(x)), y′(x) exists,

rmin
GK1

(x), otherwise,

and

rmax
GK′(x)=

{
rmax
GK1

(x)+rmax
GK2

(y′′(x))−1, y′′(x) exists,

rmax
GK1

(x) + rmax
GK2

(y′(x)), otherwise,

for all x ∈ GK1. The definitions for y ∈ GK2

are completely symmetric. It can be shown ([18])
that ε′ ≤ max {ε1, ε2}, i.e. GK′ is a max {ε1, ε2}-
approximate GK summary.

• Prune: Given a GK summary GK = GKε′,M and
a compression parameter B (to be determined later)
we compress it by picking only elements of rank
1, |M | /B, 2 |M | /B, . . . , |M | along with their original
rmin, rmax values. It is easy to see that the resulting
structure is an (ε′ + 1/(2B))-approximate GK sum-
mary over the same underlying multiset M , with a
reduced size of at most B + 1.

When the in-network aggregation reaches the base sta-
tion, instead of merging the GK summaries of the same
class, we use the combine operation to merge all GK sum-
maries together, into a single summary upon which we per-
form a final prune operation to reduce its size. The result-
ing GK summary describes our entire data set

⋃
i Si and,

most importantly, it can be shown that it is ε-approximate
[18], by setting B = 1

ε log n.
Evaluation: Based on the previous, at the end of the

tree-routing aggregation we are left with an extended GK
summary {GKε,∪iSi} at the root. From that, we ex-
tract the answer to the φ-quantile query Q be returning
Q(
⋃
i Si) = x where x is the unique element in GKε,∪iSi

such that rmin(x) ≤ φn ≤ rmax(x).
It is straightforward to show ([53]) that, due to prop-

erties (5) and (6), an ε-approximation GK summary can
answer a (φ, ε)-quantile query. Also, during th in-network
aggregation, each sensor transmits an extended GK sum-
mary consisting of at most log n (see (7)) GK summaries,
each one of which has a size of at most B+ 1 = O( 1

ε log n)
(due to the prune operation). This gives an efficient in-
network procedure for computing quantiles, using a com-
munication load of O( 1

ε log2 n) per sensor.

Finally, we should mention that Greenwald and Khanna
[18] give two variations of the GK summaries we presented,
that may provide better performance guarantees in case we
have further information about the height h of the aggrega-
tion tree. In case h is sufficiently small, say h = O(log n),
for example in balanced trees with constant size streams
per sensor, by simply combining at every node all GK
summaries, irrespectively of class, to a single summary
and appling the prune operation with h/ε compression, we
get a communication load of O(h/ε). On the other hand,
by introducing an additional, third operation called re-
duce, which ensures that every node transmits O(log(h/ε))
quantile summaries, a performance of O( 1

ε log n log h
ε ) can

be achieved, giving better results for h = o(n) (which is
the case for many real life topologies).

q-digests vs GK summaries. Although both summaries are
capable of efficiently answering (φ, ε)-quntiles, their per-
formances, O( 1

ε logN) and O( 1
ε log2 n), respectively, are

not directly comparable. Theoretically, q-digests ensure
a better communication load when our observation set⋃
i Si is very large but the values are drawn from a mod-

erate sized universe U and GK summaries perform better
with smaller streams drawn from a very large universe.
For experimental evaluation, the reader is refered to the
original papers [52], [18]. We should also note that, al-
though GK summaries are ingenious constructions, which
also demonstrate very well how algorithms for traditional
streaming problems ([53]) can be extended to sensor net-
works scenarios, q-digests are simpler to implement and
analyze and well-fitted for distributed streaming settings,
properties that make them easily extendable to more com-
plex problems (see, e.g., QDFM summaries in section 3.3).
On the other side, while GK summaries can be applied to
real-valued universes U , q-digests assume integer values.

Another subtle point worth mentioning, is that of space
complexity at the lower level of in-sensor computation.
The initialization operations we give in these section for
both summaries (and are proposed in the original papers)
require linear space computation by each sensor, with re-
spect to the length mi of its own stream. This means that
in case some sensor i observes a large stream with length of
the order of the entire data set, i.e. mi = Θ(n), the initial
generation of summary instances can be computationally
intensive (and impractical). Finally, notice that both q-
digests and GK summaries are not duplicate-insensitive.
If, for example, one aggregates (1) some instance of these
summaries with itself, a new, different instance is produced
(violating property (2)).

CM summaries. In section 2.4 we described Count-Min
sketches [22], primarily in the content of answering heavy-
hitters queries. CM sketches are very versatile data struc-
tures that can be used to approximate many other ag-
gregates, such as quantile queries. Furthermore, they can
be easily used for in-network aggregation in distributed
streaming settings, since it is trivial to see (from the def-
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inition of the update procedure of CM sketches) that if
CMM1

, CMM2
, CMM1∪M2

are the matrices of the CM
sketches of the multisets M1, M2 and their union M1∪M2,
then

CMM1∪M2
= CMM1

+ CMM2
,

where the + operation is a standard matrix addition. Us-
ing this as an aggregation operation (1) we can maintain
CM summaries to answer many queries in distributed set-
tings. The evaluation operation (computed by the base
station) are the same as those used to extract answers in
centralized settings (see section 2.4 page 8 and [22]).

Like q-digests and GK summaries, they are not dupli-
cate-insensitive. The main disadvantage, though, of using
CM summaries for tree-based computation of ε-approxi-
mate quantiles is that the communication load bound
O( 1

ε log2 n log log n
δ ) they give is inferior to those of the

q-digest and GK summaries and, in addition, it is only
guaranteed with high probability 1 − δ (in contrast to q-
digests and GK summaries that are deterministic). How-
ever, CM summaries have the advantage of being easily
extendable and, combined with other data structures, can
be made to work for many different problems and settings
(see, e.g. the duplicate-insensitive CMFM summaries of
section 3.3).

3.2.2. Distinct items

As we saw in section 2.4, FM sketches [16] can be used
in centralized streaming settings to answer distinct items
queries (DCOUNT) ε-approximately with high probability of
1− δ, maintaining m bitmaps of length k for a total space
requirement of mk = O( 1

ε2 log n log 1
δ ). Due to the decom-

posability of FM sketches (see section 2.4) they can be
readily used as summaries for in-network computation of
DCOUNT, using as aggregation operation (1) the bitwise OR

of the corresponding bitmaps. The evaluation operation
is the same as in the centralized setting, i.e. we output
(1/φ)2

∑
s rs/m where rs is the position of the leftmost 0

bit in the s-th bitmap of the FM sketch describing our
entire data set

⋃
i Si and φ ≈ 0.77351 is a constant.

But the most important property of such FM sum-
maries is that, unlike any other summary we have pre-
sented so far for tree-based aggregation, is duplicate in-
sensitive. Due to this, they will be the most essential
building blocks to construct more complex duplicate in-
sensitive summaries to deal with multi-path aggregation
problems in section 3.3.

3.3. Multi-path aggregation

Our exposition in the previous section 3.2 was built
upon the assumption that our networks are absolutely re-
liable: partial aggregate information transmitted by each
node always reaches the base station. So, the aggregation
procedure is developed in a specific, well-defined way from
the leaves to the root, across unique (shortest) paths, each
data point from our observation set being inserted only

once (through the aggregation operation (1)) into our sum-
maries and maintained until all information reaches the
base station.

However, as we discussed in the introductory section
3.1.2, such an assumption is far from realistic in sensor
networks, where packet loss and node failures in tree-based
protocols can have catastrophic consequences to the eval-
uation of our queries, especially when they occur near the
root. A simple and fundamental solution to this problem
is to deploy multi-path routing protocols, where the par-
tial infromation transmitted by each node is aggregated
across many different paths towards the base-station. The
motivation is obvious: even at the event of multiple com-
munication failures, it is very likely that a large portion
of our information has reached the root and thus, been
included in the final aggregate output.

Although this generic routing principle surely addresses
the issue of lossy networks, another problem arises: the
same information may reach the base station through dif-
ferent paths, resulting to some data points from our ob-
servation set being aggregatted more than once and over-
contributing to the final aggregate result. The solution is
to construct summaries that are order and duplicate insen-
sitive (ODI) [54], i.e. are not affected by the order in which
data points are aggregated (inserted) into them, neither by
the insertion of multiple copies of the same element. We
have formally introduced duplicate insensitivity in section
3.1.3. Regarding order insensitivity, as we mentioned in
section 2.1, page 3, we have been silently assuming this
property and will continue to do so throughout this sur-
vey, since all aggregates and summaries we will present
are order-insensitive. More formally, an order insensitive
summary has a symmetric aggregating function (1), i.e.
F (Sk1,Sk2) = F (Sk2,Sk1).

3.3.1. Summary diffusion

Nath et al. [54] proposed a formal framework to study
multi-path aggregation, called summary diffusion. The
main idea is very similar to that of the TAG framework
of Madden et al. [14] and what we presented in sections
3.1.3 and 3.1.2 in the context of tree-based aggregation:
first, durig a distribution phase the aggregate query is
flooded through the network and then, during the aggre-
gation phase the partial information maintained by each
sensor is routed towards the base station, performing an
in-network computation of the query. However, in con-
trast to tree-based routing, there is not a single, predefined
structure implied upon our nodes and so this must be con-
structed (dynamically) during the distribution phase and
a routing protocol decided for the aggregation phase.

For this, many best-effort multi-path routing schemes,
that try to build “good” paths from the sensors to the
base station, have been proposed, e.g. directed diffusion
[55, 25], braided diffusion [56] and GRAB [57]. For exam-
ple, consider the Rings topology of Nath et al. [54]: during
the distribution phase the sensors are assigned to different
rings R0, R1, . . . , Rm around the base station. The base
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station is the only node in R0 and a node is assigned to
ring Rj if it received the flooded query from a node be-
longing in Rj−1. The hop distance of the nodes in Rj is
exactly j. During the aggregation phase, the sensors in the
outermost ringRm initialize summary instances describing
their underlying streams and broadcast them to all sensors
in ring Rm−1 within, of course, transmission range. Nodes
in ring Rm−1 aggregate the summaries they received with
the summary they have generated for their own stream
and forward the new information to ring Rm−2. The pro-
cedure is continued until reaching the base station for a
final evaluation of the query.

The authors in [54] also give formal necessary and suf-
ficient conditions for ODI-correctness, however this is out
of the scope of this survey, and we refer the reader to
the original paper. We must mention that alternative,
fully-decentralized topologies for robust aggregation, that
are not base-station-centred and do not fall into the di-
rected diffusion framework have been proposed, most no-
tably gossiping protocols [58–61].

3.3.2. Duplicate insensitive summaries for duplicate sen-
sitive queries

In this section, we present duplicate insensitive tech-
niques to answer duplicate sensitive queries. As we have
discussed, this is essential in multi-path aggregation pro-
tocols. We use the duplicate insensitive FM summaries
(see section 3.2.2) as building blocks. For an experimental
evaluation of the summaries we present here, we refer to [5]
and [54]. Before proceeding, we need to slightly enrich our
distributed streaming model of section 3.1.2. It is crucial
to be able to tell the difference between true, undesired
duplicates inserted due to multi-path aggregation and dif-
ferent observations that just happen to be of the same
value. So, each sensor i will not observe just single values
x ∈ U but tuples x = 〈s(x), t(x), v(x)〉 where v(x) ∈ U
is the value of element x, t(x) is some kind of unique id
for observation x, e.g. a timestamp, and s(x) = i is the
sensor observing x. In this way, two data points x, y are
true duplicates if and only if s(x) = s(y) and t(x) = t(y).
Streams, now, are multisets of such triplets.

Observation set cardinality (COUNT). This query asks for
the number n = |∪iSi| of data points in our entire obser-
vation set. A special case is that of finding the number
of currently alive nodes in a sensor network (just assume
that each sensor i observes a single value i). It is easy to
see that the answer to this query is the same as the dis-
tinct elements query DCOUNT of section 3.2.2 (since instead
of simple values, our data points are unique triplets), so
the FM summaries can be deployed (of course, the hash
functions need to take triplets as input).

Sums (SUM). For this problem, assume that each sensor
i has computed the sum of its observations, denoted by
ci =

∑mi

j=1 v(ai j) and we ask for SUM(c1, c2, . . . , c|I|). One
obvious solution is for each sensor to generate ci tuples of

the form 〈i, j〉, j = 1, 2, . . . , ci, initialize an FM summary
with them and, essentially, compute the COUNT query of the
previous paragraph. The only drawback is that for each
initial value of ci we need to perform ci distinct insertions,
one for each tuple, and this O(ci) expected running time
may be impractical for large values of ci.

Considine et al. [5] provide an O(log ci) time and
O(ci/ log ci) space, per insertion of 〈i, ci〉, algorithm which
emulates the result of the above simple idea of ci distinct
insertions but without actually performing them. In an
earlier version [34] of that paper an alternative approach
giving O(log2 ci) time and O(ci/ log2 ci) space bounds is
presented. Notice, however, that for small ci values, these
scalable insertion algorithms may perform poorly as op-
posed to the naive approach described in the previous
paragraph.

In a higher level concerning our main issue of com-
munication load, the O( 1

ε2 log n) guaranty of the FM sum-
maries obviously holds. Nath et al. [54] give an alternative
duplicate insensitive summary for SUM that is based on a
variant of FM sketches presented in [15], but the algorithm
of Considine et al. [5] provides better accuracy in practice.

Quantiles. Considine et al. [5] combined the power of q-
digests (see section 3.2.1) with the duplicate insensitivity
of FM summaries to construct a duplicate insensitive sum-
mary for answering ε-approximate quantile queries. The
idea behind the QDFM summaries is to use FM sketches
with each bucket, instead of just the simple counters. How-
ever, due to the presence of duplicate triplets, it is possible
that a new bucket not satisfying property (3) may occur
during a merging, and so, no formal analytical guarantees
regarding the communication load are provided.

Count-min summaries. As we have already mentioned (see
sections 3.2.1, page 15), CM summaries [22] can be used to
approximate many important aggregate queries, including
quantiles and frequent items. Cormode and Muthukrish-
nan [62] extended these summaries to make them duplicate
insensitive. The underlying idea is to use FM sketches in
place of the counters (the entries of the CM matrix). A de-
tailed, formal analysis regarding the approximation guar-
antees of these CMFM summaries can be found in [5]. A
similar idea, of combining duplicate insensitive summaries
for SUM with CM sketches is also present in [54].

Uniform Sampling. Finally, we should not forget funda-
mental ideas such as sampling, which is straightforward
to implement and analyze. Nath et al. [54] describe a
duplicate-insensitive uniform sampling summary. In gen-
eral, using a random sample of size O( 1

ε2 log 1
δ ) we can

answer ε-approximate quantile queries with a probability
of 1− δ (see [63]).

3.4. Continuous queries

Up to now, we have approached the issue of distributed
streaming in a totally static way: we were answering ag-
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gregates based on a single snapshot of the underlying ob-
servation set, at a given point in time. However, sensor
networks are usually monitoring evolving phenomena and
receive huge amounts of data, dynamically over time and
in high rates. Naturally enough, we would like to extend
our single-shot querying algorithms to capture such dy-
namic processes and be able to continuously monitor and
extract critical information from the underlying infrastruc-
ture, in near real-time. Of course, such an undertaking
imposes further challenges with respect to algorithmic de-
sign, since the naive approach of simply performing re-
peated, one-shot queries to simulate constant monitoring,
requires unrealistic amounts of computational and com-
munication resources and would quickly drain battery life.
So, efficiency and satisfactory approximation, once again,
play a crucial role.

In this time-depending setting, we must revisit our
model assumptions of section 3.1.2. Instead of considering
streams simply as multisets on our universe U , we must
adopt formal models in the spirit of section 2.1. Most
results are analyzed under the simple time series model,
however can be easily extended to fit into the more general
turnstile model and even handle sliding-window semantics
(see, e.g., [27, 38, 64]). Also, a common assumption is
that the remote sensors do not communicate with each
other, but are all directly linked to a base-station (coordi-
nator), i.e. we have a tree-structure hierarchy of depth 1,
although also this assumption can be extended to capture
multi-level tree hierarchies (e.g. [27]).

The majority of the algorithms proposed for answering
continuous queries follow the same basic principle: they
assign local filters [65] to each sensor, to prevent unneces-
sary communication. These are threshold constraints and
only if they are violated the sensor pushes new informa-
tion to the base station and an update of our network is
triggered. Obviously, in such schemes there is a trade-off
between how elastic we are when setting these constraints,
i.e. what degree of variation in each sensor’s observations
we consider insignificant to report, and the communication
load incurred. Depending on the various algorithms and
summaries, the overall slack [65] (error tolerance) is dy-
namically distributed and updated across the participating
sites, coordinated by the base station which is responsible
for keeping track and adjusting the individual slacks and
balancing the overall effect. Many important aggregate
queries can be addressed in this way: algebraic [66], top-
k [64], fundamental techniques for duplicate insensitivity
[38], and others, e.g. [67].

A recent direction that extends this standard approach
of local-slack allocation where each sensor’s behavior is
considered constant (or irrelevant) between consecutive
update triggering, is that of introducing prediction models
that can be maintained by the coordinator and the remote
sites, capturing trends and predictions with respect to the
evolution of data over time. In a way, these models play
both the role of local filters, since the communication can
be prevented as long as a sensor’s stream does not de-

viate substantially from the model currently maintained,
as well as the role of reliable estimators that can answer
quickly and continuously our aggregate queries. For such
approaches see [68, 27, 69–71].

Finally, in many sensor network deployments we are in-
terested in detecting, as soon as possible, anomalies in the
distribution of the incoming data and critical events. This
is particular the case in security settings (both physical
and electronic) and environmental monitoring, such as fire
detection. Several algorithms have been proposed for such
settings of distributed threshold triggering, e.g. [72–74].

4. Future directions

Distributed data streaming is a very challenging, wide
and active research area that touches upon many disci-
plines within Computer Science. From an algorithmic
point of view, we need to lay solid foundations and models
upon which we can develop a formal theory of lower/upper
bounds and approach communication complexity theory
issues more rigorously. In a nutshell, the goal is to reach
the maturity of the field of classical data streaming. Some
steps towards this approach are being made, see e.g. [26].

Regarding the existing work we presented in this sur-
vey, apparently there is large space to provide formal com-
plexity guarantees for algorithms and summaries that, up
to now, we can only evaluate by experimental results. An-
other direction would be to study richer classes of queries,
e.g. set-valued query answers and more complex tasks
such as performing machine learning over our distributed
settings (see, e.g. [75]). Finally, security issues play a ma-
jor role in real life distributed computation and provide a
fertile ground upon which we can adapt aggregation prob-
lems (see [76]). For a more detailed analysis on possible
future directions, we refer to [65].
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